We show, by variational methods, that there exists a set open and dense in such that if then the problem , with subcritical (or more general nonlinearities), admits infinitely many solutions.
Usando metodi variazionali, si dimostra che esiste un insieme aperto e denso in tale che per ogni il problema , con sottocritico (o con nonlinearità più generali), ammette infinite soluzioni.
@article{RLIN_1998_9_9_3_157_0, author = {Francesca Alessio and Paolo Caldiroli and Piero Montecchiari}, title = {On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \)}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {9}, year = {1998}, pages = {157-165}, zbl = {0923.35057}, mrnumber = {1683006}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1998_9_9_3_157_0} }
Alessio, Francesca; Caldiroli, Paolo; Montecchiari, Piero. On the existence of infinitely many solutions for a class of semilinear elliptic equations in \( \mathbb{R}^{N} \). Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998) pp. 157-165. http://gdmltest.u-ga.fr/item/RLIN_1998_9_9_3_157_0/
[1] Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Diff. Eq., 96, 1992, 88-115. | MR 1153310 | Zbl 0766.35009
- ,[2] Genericity of the existence of infinitely many solutions for a class of semilinear elliptic equations in . Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (4), to appear. | MR 1831991 | Zbl 0931.35047
- - ,[3] Homoclinics: Poincaré-Melnikov type results via a variational approach. C.R. Acad. Sci. Paris, 323, s. I, 1996, 753-758; Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. | MR 1416171 | Zbl 0887.34042
- ,[4] Semiclassical states of nonlinear Schrödinger equation. Arch. Rat. Mech. Anal., 140, 1997, 285-300. | MR 1486895 | Zbl 0896.35042
- - ,[5] The Shadowing Lemma for Elliptic PDE. In: - (eds.), Dynamics of Infinite Dimensional Systems. NATO ASI Series, F37, Springer-Verlag, 1987. | MR 921893 | Zbl 0653.35030
,[6] On a Min-Max Procedure for the Existence of a Positive Solution for Certain Scalar Field Equation in . Rev. Mat. Iberoamericana, 6, 1990, 1-15. | MR 1086148 | Zbl 0731.35036
- ,[7] On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré, Anal. non linéaire, 14, 1997, 365-413. | MR 1450954 | Zbl 0883.35045
- ,[8] Nonlinear scalar field equations. Arch. Rat. Mech. Anal., 82, 1983, 313-345. | MR 695535 | Zbl 0533.35029
- ,[9] Positive solutions and bifurcation from the essential spectrum of a semilinear elliptic equation in . Nonlinear Anal. T.M.A., 15, 1990, 1045-1052. | MR 1082280 | Zbl 0729.35049
,[10] Multiple solutions of a semilinear elliptic equation in . Ann. Inst. H. Poincaré, Anal. non linéaire, 10, 1993, 593-604. | MR 1253603 | Zbl 0797.35039
,[11] Multiplicity of positive and nodal solutions for nonlinear elliptic problems in . Ann. Inst. H. Poincaré, Anal. non linéaire, 13, 1996, 567-588. | MR 1409663 | Zbl 0859.35032
- ,[12] On a perturbed semilinear elliptic equation in . Comm. Appl. Anal., to appear. | MR 1669769 | Zbl 0922.35051
,[13] Homoclinic type solutions for a semilinear elliptic PDE on . Comm. Pure Appl. Math., 45, 1992, 1217-1269. | MR 1181725 | Zbl 0785.35029
- ,[14] Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. H. Poincaré, Anal. non linéaire, to appear. | Zbl 0901.35023
- ,[15] On the existence of a positive entire solution of a semilinear elliptic equation. Arch. Rat. Mech. Anal., 91, 1986, 283-308. | MR 807816 | Zbl 0616.35029
- ,[16] Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh, 93, 1982, 1-14. | MR 688279 | Zbl 0506.35035
- ,[17] Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods. Comm. in PDE, 21, 1996, 787-820. | MR 1391524 | Zbl 0857.35116
,[18] Remarks on a semilinear elliptic equations on . J. Diff. Eq., 74, 1988, 34-39. | MR 949624 | Zbl 0662.35038
,[19] Prescribing scalar curvature on , and related problems. J. Funct. Anal., 118, 1991, 43-118. | MR 1245597 | Zbl 0790.53040
,[20] On a singularly perturbed elliptic equation. Adv. Diff. Eq., 2, 1997, 955-980. | MR 1606351 | Zbl 1023.35500
,[21] The concentration-compactness principle in the calculus of variations: the locally compact case. Part I, II. Ann. Inst. H. Poincaré, Anal. non linéaire, 1, 1984, 109-145; 223-283. | Zbl 0704.49004
,[22] Multiplicity results for a class of Semilinear Elliptic Equations on . Rend. Sem. Mat. Univ. Padova, 95, 1996, 217-252. | MR 1405365 | Zbl 0866.35043
,[23] Multiple positive solutions of the equation in . Top. Meth. Nonlinear Anal., 7, 1996, 171-185. | MR 1422010 | Zbl 0909.35042
,[24] A note on a semilinear elliptic equation on . In: - (eds.), Nonlinear Analysis, a tribute in honour of Giovanni Prodi. Quaderni della Scuola Normale Superiore, Pisa 1991. | MR 1205391 | Zbl 0836.35045
,[25] On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys., 43, 1992, 270-291. | MR 1162728 | Zbl 0763.35087
,[26] Looking for the Bernoulli shift. Ann. Inst. H. Poincaré, Anal. non linéaire, 10, 1993, 561-590. | MR 1249107 | Zbl 0803.58013
,[27] Existence of solitary waves in higher dimensions. Comm. Math. Phys., 55, 1979, 149-162. | MR 454365 | Zbl 0356.35028
,[28] Bifurcation in for a semilinear elliptic equation. Proc. London Math. Soc., (3), 57, 1988, 511-541. | MR 960098 | Zbl 0673.35005
,