Monotonicity and symmetry of solutions of p-Laplace equations, 1<p<2, via the moving plane method
Damascelli, Lucio ; Pacella, Filomena
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998), p. 95-100 / Harvested from Biblioteca Digitale Italiana di Matematica

We present some monotonicity and symmetry results for positive solutions of the equation -divDup-2Du=fu satisfying an homogeneous Dirichlet boundary condition in a bounded domain Ω. We assume 1 < p < 2 and f locally Lipschitz continuous and we do not require any hypothesis on the critical set of the solution. In particular we get that if Ω is a ball then the solutions are radially symmetric and strictly radially decreasing.

Dimostriamo alcuni risultati di monotonia e simmetria per soluzioni positive dell’equazione -divDup-2Du=fu con condizioni di Dirichlet omogenee sul bordo in un dominio limitato Ω. Supponiamo che 1 < p < 2 e che f sia localmente Lipschitziana e non facciamo alcuna ipotesi sui punti critici della soluzione. In particolare otteniamo che se Ω e` una palla le soluzioni sono radiali e radialmente strettamente decrescenti.

Publié le : 1998-06-01
@article{RLIN_1998_9_9_2_95_0,
     author = {Lucio Damascelli and Filomena Pacella},
     title = {Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {9},
     year = {1998},
     pages = {95-100},
     zbl = {0923.35013},
     mrnumber = {1677254},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1998_9_9_2_95_0}
}
Damascelli, Lucio; Pacella, Filomena. Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998) pp. 95-100. http://gdmltest.u-ga.fr/item/RLIN_1998_9_9_2_95_0/

[1] Badiale, M. - Nabana, E., A note on radiality of solutions of p-laplacian equations. Appl. Anal., 52, 1994, 35-43. | MR 1380325 | Zbl 0841.35008

[2] Brock, F., Continuous Rearrangement and symmetry of solutions of elliptic problems. Habilitation thesis, Cologne1997. | Zbl 0965.49002

[3] Damascelli, L., Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré, in press. | Zbl 0911.35009

[4] Damascelli, L. - Pacella, F., Monotonicity and symmetry of solutions of p-Laplace equations, 1 < p < 2, via the moving plane method. Ann. Scuola Norm. Sup. Pisa, in press. | Zbl 0930.35070

[5] Dibenedetto, E., C1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear An. T.M.A., 7 (8), 1983, 827-850. | MR 709038 | Zbl 0539.35027

[6] Gidas, B. - Ni, W. M. - Nirenberg, L., Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, 209-243. | MR 544879 | Zbl 0425.35020

[7] Grossi, M. - Kesavan, S. - Pacella, F. - Ramaswami, M., Symmetry of positive solutions of some nonlinear equations. Topological Methods in Nonlinear Analysis, to appear. | Zbl 0927.35039

[8] Kesavan, S. - Pacella, F., Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequality. Appl. Anal., 54, 1994, 27-37. | MR 1382205 | Zbl 0833.35040

[9] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eq., 51, 1984, 126-150. | MR 727034 | Zbl 0488.35017