We present some monotonicity and symmetry results for positive solutions of the equation satisfying an homogeneous Dirichlet boundary condition in a bounded domain . We assume 1 < p < 2 and locally Lipschitz continuous and we do not require any hypothesis on the critical set of the solution. In particular we get that if is a ball then the solutions are radially symmetric and strictly radially decreasing.
Dimostriamo alcuni risultati di monotonia e simmetria per soluzioni positive dell’equazione con condizioni di Dirichlet omogenee sul bordo in un dominio limitato . Supponiamo che 1 < p < 2 e che sia localmente Lipschitziana e non facciamo alcuna ipotesi sui punti critici della soluzione. In particolare otteniamo che se e` una palla le soluzioni sono radiali e radialmente strettamente decrescenti.
@article{RLIN_1998_9_9_2_95_0, author = {Lucio Damascelli and Filomena Pacella}, title = {Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {9}, year = {1998}, pages = {95-100}, zbl = {0923.35013}, mrnumber = {1677254}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1998_9_9_2_95_0} }
Damascelli, Lucio; Pacella, Filomena. Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998) pp. 95-100. http://gdmltest.u-ga.fr/item/RLIN_1998_9_9_2_95_0/
[1] A note on radiality of solutions of -laplacian equations. Appl. Anal., 52, 1994, 35-43. | MR 1380325 | Zbl 0841.35008
- ,[2] Continuous Rearrangement and symmetry of solutions of elliptic problems. Habilitation thesis, Cologne1997. | Zbl 0965.49002
,[3] Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré, in press. | Zbl 0911.35009
,[4] Monotonicity and symmetry of solutions of -Laplace equations, 1 < p < 2, via the moving plane method. Ann. Scuola Norm. Sup. Pisa, in press. | Zbl 0930.35070
- ,[5] local regularity of weak solutions of degenerate elliptic equations. Nonlinear An. T.M.A., 7 (8), 1983, 827-850. | MR 709038 | Zbl 0539.35027
,[6] Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, 209-243. | MR 544879 | Zbl 0425.35020
- - ,[7] Symmetry of positive solutions of some nonlinear equations. Topological Methods in Nonlinear Analysis, to appear. | Zbl 0927.35039
- - - ,[8] Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequality. Appl. Anal., 54, 1994, 27-37. | MR 1382205 | Zbl 0833.35040
- ,[9] Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eq., 51, 1984, 126-150. | MR 727034 | Zbl 0488.35017
,