We present some monotonicity and symmetry results for positive solutions of the equation satisfying an homogeneous Dirichlet boundary condition in a bounded domain . We assume 1 < p < 2 and locally Lipschitz continuous and we do not require any hypothesis on the critical set of the solution. In particular we get that if is a ball then the solutions are radially symmetric and strictly radially decreasing.
Dimostriamo alcuni risultati di monotonia e simmetria per soluzioni positive dell’equazione con condizioni di Dirichlet omogenee sul bordo in un dominio limitato . Supponiamo che 1 < p < 2 e che sia localmente Lipschitziana e non facciamo alcuna ipotesi sui punti critici della soluzione. In particolare otteniamo che se e` una palla le soluzioni sono radiali e radialmente strettamente decrescenti.
@article{RLIN_1998_9_9_2_95_0,
author = {Lucio Damascelli and Filomena Pacella},
title = {Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
volume = {9},
year = {1998},
pages = {95-100},
zbl = {0923.35013},
mrnumber = {1677254},
language = {en},
url = {http://dml.mathdoc.fr/item/RLIN_1998_9_9_2_95_0}
}
Damascelli, Lucio; Pacella, Filomena. Monotonicity and symmetry of solutions of \( p \)-Laplace equations, \( 1 < p < 2 \), via the moving plane method. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998) pp. 95-100. http://gdmltest.u-ga.fr/item/RLIN_1998_9_9_2_95_0/
[1] - , A note on radiality of solutions of -laplacian equations. Appl. Anal., 52, 1994, 35-43. | MR 1380325 | Zbl 0841.35008
[2] , Continuous Rearrangement and symmetry of solutions of elliptic problems. Habilitation thesis, Cologne1997. | Zbl 0965.49002
[3] , Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré, in press. | Zbl 0911.35009
[4] - , Monotonicity and symmetry of solutions of -Laplace equations, 1 < p < 2, via the moving plane method. Ann. Scuola Norm. Sup. Pisa, in press. | Zbl 0930.35070
[5] , local regularity of weak solutions of degenerate elliptic equations. Nonlinear An. T.M.A., 7 (8), 1983, 827-850. | MR 709038 | Zbl 0539.35027
[6] - - , Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, 209-243. | MR 544879 | Zbl 0425.35020
[7] - - - , Symmetry of positive solutions of some nonlinear equations. Topological Methods in Nonlinear Analysis, to appear. | Zbl 0927.35039
[8] - , Symmetry of positive solutions of a quasilinear elliptic equation via isoperimetric inequality. Appl. Anal., 54, 1994, 27-37. | MR 1382205 | Zbl 0833.35040
[9] , Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eq., 51, 1984, 126-150. | MR 727034 | Zbl 0488.35017