A maximum reduced dissipation principle for nonassociative plasticity
Polizzotto, Castrenze
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998), p. 115-129 / Harvested from Biblioteca Digitale Italiana di Matematica

The concept of reduced plastic dissipation is introduced for a perfectly plastic rate-independent material not obeyng the associated normality rule and characterized by a strictly convex plastic potential function. A maximum principle is provided and shown to play the role of variational statement for the nonassociative constitutive equations. The Kuhn-Tucker conditions of this principle describe the actual material behaviour as that of a (fictitious) composite material with two plastic constituents, each of which is associative in some suitably enlarged stress and strain spaces. The proposed principle is shown to identify with the classical one in case of associative plasticity. A simple illustrative example is reported.

Per un materiale perfettamente plastico (privo di effetti viscosi) di tipo non associativo e caratterizzato da una funzione potenziale plastico strettamente convessa, si introduce il concetto di dissipazione plastica ridotta. Si propone un principio di massimo e si mostra che esso rappresenta una formulazione variazionale delle equazioni costitutive della plasticità non associativa. Le condizioni di Kuhn-Tucker relative al suddetto principio descrivono il comportamento costitutivo del materiale reale come quello di un materiale (fittizio) composito con due costituenti ciascuno dei quali è di tipo plastico associativo in taluni spazi di tensioni e di deformazioni opportunamente ampliati. Il principio proposto si identifica con quello classico nel caso di plasticità associativa. Si riporta una semplice applicazione illustrativa.

Publié le : 1998-06-01
@article{RLIN_1998_9_9_2_115_0,
     author = {Castrenze Polizzotto},
     title = {A maximum reduced dissipation principle for nonassociative plasticity},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {9},
     year = {1998},
     pages = {115-129},
     zbl = {0922.73015},
     mrnumber = {1677266},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1998_9_9_2_115_0}
}
Polizzotto, Castrenze. A maximum reduced dissipation principle for nonassociative plasticity. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998) pp. 115-129. http://gdmltest.u-ga.fr/item/RLIN_1998_9_9_2_115_0/

[1] Chen, W.-F. - Saleeb, A. F., Constitutive Equations for Engineering Materials. Vol. 2: Plasticity and Modelling. Elsevier, Amsterdam 1994. | Zbl 0595.73002

[2] Corigliano, A. - Maier, G. - Pycko, S., Kinematic criteria of dynamic shakedown extended to nonassociative constitutive laws with saturation nonlinear hardening. Rend. Mat. Acc. Lincei, s. 9, v. 6, 1995, 55-64. | MR 1340282 | Zbl 0833.73014

[3] Courant, R. - Hilbert, D., Methods of Mathematical Physics. Vol. 1, Interscience Publishers Inc., New York 1953. | MR 65391 | Zbl 0051.28802

[4] Josselin De Jong, G., Lower bound collapse theorem and lack of normality of strainrate to yield surface for soils. In: J. Kravtchenko - P. M. Sirieys (eds.), Reology and Soil Mechanics. Springer-Verlag, Berlin 1966, 69-78.

[5] Drucker, D. C., Plasticity. In: J. N. Goodier - J.H. Hoff (eds.), Structural Mechanics. Pergamon Press, London 1960, 407-445. | MR 112328

[6] Fuschi, P. - Polizzotto, C., The shakedown load boundary of an elastic-perfectly plastic structure. Meccanica, 30, 1995, 155-174. | MR 1331048 | Zbl 0824.73014

[7] Hill, R., The Mathematical Theory of Plasticity. Oxford University Press, Oxford1950. | MR 37721 | Zbl 0923.73001

[8] Kaliszky, S., Plasticity. Theory and Engineering Applications. Elsevier, Amsterdam1989. | Zbl 0698.73017

[9] Koiter, W. T., General theorems of elastis-plastic solids. In: J. S. Sneddon - R. Hill (eds.), Progress in Solid Mechanics. North Holland, Amsterdam 1960, 1, 167-221. | MR 112405 | Zbl 0098.37603

[10] Lemaitre, J. - Chaboche, J. L., Mécanique des Matériaux Solides. Dunod, Paris 1985.

[11] Lubliner, J., Plasticity Theory. Macmillan Publishing Company, New York1990. | Zbl 0745.73006

[12] Maier, G., A minimum principle for incremental elastoplasticity with non-associated flow laws. J. Mech. Phys. Solids, 18, 1970, 319-330. | Zbl 0208.27301

[13] Mangasarian, O. L., Nonlinear Programming. McGraw-Hill Book Company, New York1969. | MR 252038 | Zbl 0194.20201

[14] Martin, J. B., Plasticity: Fundamentals and General Results. The MIT press, Cambridge, Ma., 1975.

[15] Mróz, Z., Non-associated flow laws in plasticity. J. de Mécanique, II, n. 1, 1963, 21-42. | MR 149755

[16] Palmer, A. C., A limit theorem for materials with nonassociative flow laws. J. de Mécanique, V, n. 2, 1966, 217-222.

[17] Pycko, S. - Maier, G., Shakedown theorems for some classes of nonassociative hardening elastic-plastic material models. Int. J. Plasticity, 11, 1995, 367-395. | Zbl 0853.73021

[18] Radenkovic, D., Théorie des charges limites. Extension à la mécanique du sol. In: J. Mandel (ed.), Séminaire de Plasticité. (Ecole Polytechnique 1961), Magasin C.T.O., Paris 1962, 129-141.

[19] Salençon, J., Théorie des charges limites. In: Seminaire de Plasticité et Viscoplasticité. Ecole Polytechnique, 1972, Ediscience, Paris1974, 205-229. | Zbl 0294.73038