Adapting meshes and time-steps for phase change problems
Nochetto, Ricardo H. ; Schmidt, Alfred ; Verdi, Claudio
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997), p. 273-292 / Harvested from Biblioteca Digitale Italiana di Matematica

We address the numerical approximation of the two-phase Stefan problem and discuss an adaptive finite element method based on rigorous a posteriori error estimation and refinement/coarsening. We also investigate how to restrict coarsening for the resulting method to be stable and convergent. We review implementation issues associated with bisection and conclude with simulations of a persistent corner singularity, for which adaptivity is an essential tool.

Si considera l'approssimazione numerica del problema di Stefan bifase e si discute un metodo adattativo di elementi finiti basato su stime dell'errore a posteriori rigorose e su tecniche di raffinamento/deraffinamento della reticolazione. Si dimostra che il metodo è stabile e convergente sotto opportune restrizioni dell'operazione di deraffinamento e si illustra l'implementazione dell'algoritmo adattativo con un metodo di bisezione. Si conclude, infine, con alcune simulazioni di un problema che presenta una singolarità di tipo angolo, per catturare la quale è essenziale l'uso di metodi di raffinamento locale.

Publié le : 1997-12-01
@article{RLIN_1997_9_8_4_273_0,
     author = {Ricardo H. Nochetto and Alfred Schmidt and Claudio Verdi},
     title = {Adapting meshes and time-steps for phase change problems},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {8},
     year = {1997},
     pages = {273-292},
     zbl = {0910.65106},
     mrnumber = {1631617},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1997_9_8_4_273_0}
}
Nochetto, Ricardo H.; Schmidt, Alfred; Verdi, Claudio. Adapting meshes and time-steps for phase change problems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997) pp. 273-292. http://gdmltest.u-ga.fr/item/RLIN_1997_9_8_4_273_0/

[1] Athanasopoulos, I. - Caffarelli, L. - Salsa, S., Degenerate phase transition problems of parabolic type. Smoothness of the front. To appear. | MR 1831629

[2] Bänsch, E., Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg., 3, 1991, 181-191. | MR 1141298 | Zbl 0744.65074

[3] Ciarlet, Ph. G., The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam1978. | MR 520174 | Zbl 0511.65078

[4] Clément, Ph., Approximation by finite element functions using local regularization. RAIRO Modél. Math. Anal. Numér., 9, 1975, 77-84. | MR 400739 | Zbl 0368.65008

[5] Dupont, T., Mesh modification for evolution equations. Math. Comp., 29, 1982, 85-107. | MR 658215 | Zbl 0493.65044

[6] Elliott, C. M., Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal, 7, 1987, 61-71. | MR 967835 | Zbl 0638.65088

[7] Eriksson, K. - Johnson, C., Adaptive finite element methods for parabolic problems. I: A linear model problem. SIAM J. Numer. Anal., 28, 1991, 43-77. | MR 1083324 | Zbl 0732.65093

[8] Jerome, J. W. - Rose, M. E., Error estimates for the multidimensional two-phase Stefan problem. Math. Comp., 39, 1982, 377-414. | MR 669635 | Zbl 0505.65060

[9] Jiang, X. - Nochetto, R. H., Optimal error estimates for semidiscrete phase relaxation models. RAIRO Modél. Math. Anal. Numér., 31, 1997, 91-120. | MR 1432853 | Zbl 0874.65069

[10] Jiang, X. - Nochetto, R. H., A finite element method for a phase relaxation model. Part I: Quasi-uniform mesh. SIAM J. Numer. Anal., to appear. | MR 1619875 | Zbl 0972.65067

[11] Jiang, X. - Nochetto, R. H. - Verdi, C., A P1-P1 finite element method for a phase relaxation model. Part II: Adaptively refined meshes. SIAM J. Numer. Anal., to appear. | MR 1688994 | Zbl 0934.65105

[12] Kornhuber, R., Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems. Teubner, Stuttgart1997. | MR 1469497 | Zbl 0879.65041

[13] Kossaczký, I., A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math., 55, 1994, 275-288. | MR 1329875 | Zbl 0823.65119

[14] Ladyzenskaja, O. A. - Solonnikov, V. - Ural'Ceva, N., Linear and Quasilinear Equations of Parabolic Type. TMM 23, AMS, Providence 1968. | MR 241822 | Zbl 0174.15403

[15] Magenes, E. - Nochetto, R. H. - Verdi, C., Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Modél. Math. Anal. Numér., 21, 1987, 655-678. | MR 921832 | Zbl 0635.65123

[16] Maubach, J. M., Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Statist. Comput., 16, 1995, 210-227. | MR 1311687 | Zbl 0816.65090

[17] Mitchell, W., A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw., 15, 1989, 326-347. | MR 1062496 | Zbl 0900.65306

[18] Nochetto, R. H., Error estimates for multidimensional singular parabolic problems. Japan J. Indust. Appl. Math., 4, 1987, 111-138. | MR 899207 | Zbl 0657.65132

[19] Nochetto, R. H., Finite element methods for parabolic free boundary problems. In: W. Light (ed.), Advances in Numerical Analysis, Nonlinear Partial Differential Equations and Dynamical Systems. Oxford University Press, vol. I, Oxford 1991, 34-88. | MR 1138471 | Zbl 0733.65089

[20] Nochetto, R. H. - Paolini, M. - Verdi, C., An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part I: Stability and error estimates. Supplement. Math. Comp., 57, 1991, 73-108, S1-S11. | MR 1079028 | Zbl 0733.65087

[21] Nochetto, R. H. - Paolini, M. - Verdi, C., An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part II: Implementation and numerical experiments. SIAM J. Sci. Statist. Comput., 12, 1991, 1207-1244. | MR 1114983 | Zbl 0733.65088

[22] Nochetto, R. H. - Paolini, M. - Verdi, C., A fully discrete adaptive nonlinear Chernoff formula. SIAM J. Numer. Anal., 30, 1993, 991-1014. | MR 1231324 | Zbl 0805.65135

[23] Nochetto, R. H. - Schmidt, A. - Verdi, C., A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp., to appear. | MR 1648399 | Zbl 0942.65111

[24] Nochetto, H. - Schmidt, A. - Verdi, C., Mesh and time step modification for degenerate parabolic problems. In preparation.

[25] Nochetto, R. H. - Schmidt, A. - Verdi, C., Adaptive algorithm and simulations for Stefan problems in two and three dimensions. In preparation.

[26] Nochetto, R. H. - Verdi, C., Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal., 25, 1988, 784-814. | MR 954786 | Zbl 0655.65131

[27] Nochetto, R. H. - Verdi, C., An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comp., 51, 1988, 27-53. | MR 942142 | Zbl 0657.65131

[28] Rulla, J., Error analysis for implicit approximations to solutions to Chauchy problems. SIAM J. Numer. Anal., 33, 1996, 68-87. | MR 1377244 | Zbl 0855.65102

[29] Rulla, J. - Walkington, N. J., Optimat rates of convergence for degenerate parabolic problems in two dimensions. SIAM J. Numer. Anal., 33, 1996, 56-57. | MR 1377243 | Zbl 0856.65102

[30] Verdi, C., Numerical aspects of parabolic free boundary and hysteresis problems. in: A. Visintin (ed.), Phase Transition and Hysteresis. Lectures Notes in Mathematics, 1584, Springer-Verlag, Berlin 1994, 213-284. | MR 1321834 | Zbl 0819.35155

[31] Verdi, C. - Visintin, A., Error estimates for a semiexplicit numerical scheme for Stefan-type problems. Numer. Math., 52, 1988, 165-185. | MR 923709 | Zbl 0617.65125

[32] Visintin, A., Models of Phase Transitions. Birkhäuser, Boston1996. | MR 1423808 | Zbl 0882.35004