We address the numerical approximation of the two-phase Stefan problem and discuss an adaptive finite element method based on rigorous a posteriori error estimation and refinement/coarsening. We also investigate how to restrict coarsening for the resulting method to be stable and convergent. We review implementation issues associated with bisection and conclude with simulations of a persistent corner singularity, for which adaptivity is an essential tool.
Si considera l'approssimazione numerica del problema di Stefan bifase e si discute un metodo adattativo di elementi finiti basato su stime dell'errore a posteriori rigorose e su tecniche di raffinamento/deraffinamento della reticolazione. Si dimostra che il metodo è stabile e convergente sotto opportune restrizioni dell'operazione di deraffinamento e si illustra l'implementazione dell'algoritmo adattativo con un metodo di bisezione. Si conclude, infine, con alcune simulazioni di un problema che presenta una singolarità di tipo angolo, per catturare la quale è essenziale l'uso di metodi di raffinamento locale.
@article{RLIN_1997_9_8_4_273_0, author = {Ricardo H. Nochetto and Alfred Schmidt and Claudio Verdi}, title = {Adapting meshes and time-steps for phase change problems}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {8}, year = {1997}, pages = {273-292}, zbl = {0910.65106}, mrnumber = {1631617}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1997_9_8_4_273_0} }
Nochetto, Ricardo H.; Schmidt, Alfred; Verdi, Claudio. Adapting meshes and time-steps for phase change problems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997) pp. 273-292. http://gdmltest.u-ga.fr/item/RLIN_1997_9_8_4_273_0/
[1] Degenerate phase transition problems of parabolic type. Smoothness of the front. To appear. | MR 1831629
- - ,[2] Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg., 3, 1991, 181-191. | MR 1141298 | Zbl 0744.65074
,[3] | MR 520174 | Zbl 0511.65078
, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam1978.[4] Approximation by finite element functions using local regularization. RAIRO Modél. Math. Anal. Numér., 9, 1975, 77-84. | MR 400739 | Zbl 0368.65008
,[5] Mesh modification for evolution equations. Math. Comp., 29, 1982, 85-107. | MR 658215 | Zbl 0493.65044
,[6] Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal, 7, 1987, 61-71. | MR 967835 | Zbl 0638.65088
,[7] Adaptive finite element methods for parabolic problems. I: A linear model problem. SIAM J. Numer. Anal., 28, 1991, 43-77. | MR 1083324 | Zbl 0732.65093
- ,[8] Error estimates for the multidimensional two-phase Stefan problem. Math. Comp., 39, 1982, 377-414. | MR 669635 | Zbl 0505.65060
- ,[9] Optimal error estimates for semidiscrete phase relaxation models. RAIRO Modél. Math. Anal. Numér., 31, 1997, 91-120. | MR 1432853 | Zbl 0874.65069
- ,[10] A finite element method for a phase relaxation model. Part I: Quasi-uniform mesh. SIAM J. Numer. Anal., to appear. | MR 1619875 | Zbl 0972.65067
- ,[11] A finite element method for a phase relaxation model. Part II: Adaptively refined meshes. SIAM J. Numer. Anal., to appear. | MR 1688994 | Zbl 0934.65105
- - ,[12] | MR 1469497 | Zbl 0879.65041
, Adaptive Monotone Multigrid Methods for Nonlinear Variational Problems. Teubner, Stuttgart1997.[13] A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math., 55, 1994, 275-288. | MR 1329875 | Zbl 0823.65119
,[14] 23, AMS, Providence 1968. | MR 241822 | Zbl 0174.15403
- - , Linear and Quasilinear Equations of Parabolic Type. TMM[15] Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO Modél. Math. Anal. Numér., 21, 1987, 655-678. | MR 921832 | Zbl 0635.65123
- - ,[16] Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Statist. Comput., 16, 1995, 210-227. | MR 1311687 | Zbl 0816.65090
,[17] A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw., 15, 1989, 326-347. | MR 1062496 | Zbl 0900.65306
,[18] Error estimates for multidimensional singular parabolic problems. Japan J. Indust. Appl. Math., 4, 1987, 111-138. | MR 899207 | Zbl 0657.65132
,[19] Finite element methods for parabolic free boundary problems. In: (ed.), Advances in Numerical Analysis, Nonlinear Partial Differential Equations and Dynamical Systems. Oxford University Press, vol. I, Oxford 1991, 34-88. | MR 1138471 | Zbl 0733.65089
,[20] An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part I: Stability and error estimates. Supplement. Math. Comp., 57, 1991, 73-108, S1-S11. | MR 1079028 | Zbl 0733.65087
- - ,[21] An adaptive finite elements method for two-phase Stefan problems in two space dimensions. Part II: Implementation and numerical experiments. SIAM J. Sci. Statist. Comput., 12, 1991, 1207-1244. | MR 1114983 | Zbl 0733.65088
- - ,[22] A fully discrete adaptive nonlinear Chernoff formula. SIAM J. Numer. Anal., 30, 1993, 991-1014. | MR 1231324 | Zbl 0805.65135
- - ,[23] A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp., to appear. | MR 1648399 | Zbl 0942.65111
- - ,[24] Mesh and time step modification for degenerate parabolic problems. In preparation.
- - ,[25] Adaptive algorithm and simulations for Stefan problems in two and three dimensions. In preparation.
- - ,[26] Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal., 25, 1988, 784-814. | MR 954786 | Zbl 0655.65131
- ,[27] An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comp., 51, 1988, 27-53. | MR 942142 | Zbl 0657.65131
- ,[28] Error analysis for implicit approximations to solutions to Chauchy problems. SIAM J. Numer. Anal., 33, 1996, 68-87. | MR 1377244 | Zbl 0855.65102
,[29] Optimat rates of convergence for degenerate parabolic problems in two dimensions. SIAM J. Numer. Anal., 33, 1996, 56-57. | MR 1377243 | Zbl 0856.65102
- ,[30] Numerical aspects of parabolic free boundary and hysteresis problems. in: (ed.), Phase Transition and Hysteresis. Lectures Notes in Mathematics, 1584, Springer-Verlag, Berlin 1994, 213-284. | MR 1321834 | Zbl 0819.35155
,[31] Error estimates for a semiexplicit numerical scheme for Stefan-type problems. Numer. Math., 52, 1988, 165-185. | MR 923709 | Zbl 0617.65125
- , , Models of Phase Transitions. Birkhäuser, Boston1996.