Let be domain in a complex Banach space , and let be a pseudometric assigned to by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping to be a generator of a -nonexpansive semigroup on in terms of its nonlinear resolvent. In the second section we let be a complex Hilbert space, the open unit ball of , and the hyperbolic metric on . We introduce the notion of a -monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of .
Sia un dominio in uno spazio di Banach complesso e sia una pseudometrica assegnata a da un sistema di Schwarz-Pick. Nella prima parte del lavoro si stabiliscono alcuni criteri affinché una applicazione sia un generatore di un semigruppo -non espansivo su . Nella seconda parte si suppone che sia , spazio di Hilbert complesso, che disco unitario aperto di e che sia la metrica iperbolica su . Si introduce la nozione di applicazione -monotona e si ottengono semplici caratterizzazioni di generatori di semigruppi di applicazioni olomorfe di in sé.
@article{RLIN_1997_9_8_4_231_0, author = {Simeon Reich and David Shoikhet}, title = {Semigroups and generators on convex domains with the hyperbolic metric}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {8}, year = {1997}, pages = {231-250}, zbl = {0905.47056}, mrnumber = {1631605}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1997_9_8_4_231_0} }
Reich, Simeon; Shoikhet, David. Semigroups and generators on convex domains with the hyperbolic metric. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997) pp. 231-250. http://gdmltest.u-ga.fr/item/RLIN_1997_9_8_4_231_0/
[1] Horospheres and iterates of holomorphic maps. Math. Z., 198, 1988, 225-238. | MR 939538 | Zbl 0628.32035
,[2] The infinitesimal generators of semigroups of holomorphic maps. Ann. Mat. Pura Appl., 161, 1992, 167-180. | MR 1174816 | Zbl 0758.32013
,[3] Common fixed points in hyperbolic Riemann surfaces and convex domains. Proc. Amer. Math. Soc., 112, 1991, 503-512. | MR 1065938 | Zbl 0724.32012
- ,[4] One-sided estimates for the existence of null points of holomorphic mappings in Banach spaces. J. Math. Anal. Appl., 203, 1996, 38-54. | MR 1412480 | Zbl 0869.46025
- - ,[5] 1267, Springer, Berlin1987, 122-150. | MR 907690 | Zbl 0622.46012
, An application of infinite dimensional holomorphy to the geometry of Banach spaces. Lecture Notes in Math., vol.[6] | MR 390843 | Zbl 0328.47035
, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden1976.[7] Semigroups of analytic functions and composition operators. Michigan Math. J., 25, 1978, 101-115. | MR 480965 | Zbl 0382.47017
- ,[8]
, Opérateurs Maximaux Monotones. North Holland, Amsterdam1973.[9] Sur les rétractions d'une variété. C. R. Acad. Sci. Paris, 303, 1986, 715-716. | MR 870703 | Zbl 0609.32021
,[10] On continuity and smoothness of group actions. Bull. Amer. Math. Soc., 76, 1970, 1044-1049. | MR 265510 | Zbl 0202.23202
- ,[11] Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 1971, 265-298. | MR 287357 | Zbl 0226.47038
- ,[12] | MR 1033739 | Zbl 0708.46046
, The Schwarz Lemma. Clarendon Press, Oxford1989.[13] Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529. | MR 848840 | Zbl 0603.46052
- - ,[14] A fixed point theorem for holomorphic mappings. Proc. Symp. Pure Math., vol. 16, Amer. Math. Soc., Providence, RI, 1970, 61-65. | MR 266009 | Zbl 0205.14702
- ,[15] | MR 563329 | Zbl 0447.46040
- , Holomorphic Maps and Invariant Distances. North Holland, Amsterdam 1980.[16] | MR 341540 | Zbl 0348.60042
- , Theory of Random Processes. Nauka, Moscow 1973.[17] | MR 744194 | Zbl 0537.46001
- , Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York-Basel 1984.[18] Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. Advances in Holomorphy, North Holland, Amsterdam1979, 345-406. | MR 520667 | Zbl 0409.46053
,[19] | MR 163361 | Zbl 0117.13002
, The Theory of Branching Processes. Springer, Berlin1963.[20] | MR 1299725 | Zbl 0943.93001
- , Optimization and Dynamical Systems. Springer, London 1994.[21] Computation of extinction probabilities for the Bellman-Harris branching process. Math. Biosciences, 77, 1985, 173-177. | MR 820410 | Zbl 0575.60085
,[22] Ergodic type theorems for nonlinear semigroups with holomorphic generators. Recent Developments in Evolution Equations, Pitman Research Notes in Math., vol. 324, 1995, 191-200. | MR 1417074 | Zbl 0863.47053
- - ,[23] Global implicit function and fixed point theorems for holomorphic mappings and semigroups. Complex Variables, 28, 1996, 347-356. | MR 1700203 | Zbl 0843.58007
- - ,[24] | MR 736839
- , Geometrical Methods of Nonlinear Analysis. Springer, Berlin 1984.[25] Iterates of holomorphic and -nonexpansive mappings in convex domains in . Advances Math., 81, 1990, 90-98. | MR 1051224 | Zbl 0726.32016
- ,[26] Points fixes d'une application holomorphe d'un domaine borné dans lui-même. Acta Math., 166, 1991, 1-26. | MR 1088981 | Zbl 0733.32020
- ,[27] The fixed point sets of some holomorphic maps. Bull. Malaysian Math. Soc., 1, 1978, 25-28. | MR 506535 | Zbl 0413.32012
,[28] | MR 345229
, Branching Processes. Nauka, Moscow1971.[29] Coaccretive operators and firmly nonexpansive mappings in the Hilbert ball. Nonlinear Analysis, 18, 1992, 637-648. | MR 1157564 | Zbl 0752.47018
,[30] | MR 874756 | Zbl 0608.17013
, Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics. CBMS - NSF Regional Conference Series in Math., AMS, Providence1987.[31] Semigroups of holomorphic isometries. Advances Math., 65, 1987, 272-306. | MR 904726 | Zbl 0642.47035
,[32] Krein spaces and holomorphic isometries of Cartan domains. In: (ed.), Geometry and Complex Variables. Dekker, New York 1991, 409-413. | MR 1151658 | Zbl 0829.47029
,[33] Semigroups of holomorphic isometries. In: (ed.), Complex Potential Theory. Kluwer, Dordrecht 1994, 475-548. | MR 1332968 | Zbl 0802.46058
,[34]
, Functional Analysis. Springer, Berlin1968.