Semigroups and generators on convex domains with the hyperbolic metric
Reich, Simeon ; Shoikhet, David
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997), p. 231-250 / Harvested from Biblioteca Digitale Italiana di Matematica

Let D be domain in a complex Banach space X, and let ρ be a pseudometric assigned to D by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping f:DX to be a generator of a ρ-nonexpansive semigroup on D in terms of its nonlinear resolvent. In the second section we let X=H be a complex Hilbert space, D=B the open unit ball of H, and ρ the hyperbolic metric on B. We introduce the notion of a ρ-monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of B.

Sia D un dominio in uno spazio di Banach complesso X e sia ρ una pseudometrica assegnata a D da un sistema di Schwarz-Pick. Nella prima parte del lavoro si stabiliscono alcuni criteri affinché una applicazione f:DX sia un generatore di un semigruppo ρ-non espansivo su D. Nella seconda parte si suppone che sia X=H, spazio di Hilbert complesso, che D=B disco unitario aperto di H e che sia ρ la metrica iperbolica su B. Si introduce la nozione di applicazione ρ-monotona e si ottengono semplici caratterizzazioni di generatori di semigruppi di applicazioni olomorfe di B in sé.

Publié le : 1997-12-01
@article{RLIN_1997_9_8_4_231_0,
     author = {Simeon Reich and David Shoikhet},
     title = {Semigroups and generators on convex domains with the hyperbolic metric},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {8},
     year = {1997},
     pages = {231-250},
     zbl = {0905.47056},
     mrnumber = {1631605},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1997_9_8_4_231_0}
}
Reich, Simeon; Shoikhet, David. Semigroups and generators on convex domains with the hyperbolic metric. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997) pp. 231-250. http://gdmltest.u-ga.fr/item/RLIN_1997_9_8_4_231_0/

[1] Abate, M., Horospheres and iterates of holomorphic maps. Math. Z., 198, 1988, 225-238. | MR 939538 | Zbl 0628.32035

[2] Abate, M., The infinitesimal generators of semigroups of holomorphic maps. Ann. Mat. Pura Appl., 161, 1992, 167-180. | MR 1174816 | Zbl 0758.32013

[3] Abate, M. - Vigué, J. P., Common fixed points in hyperbolic Riemann surfaces and convex domains. Proc. Amer. Math. Soc., 112, 1991, 503-512. | MR 1065938 | Zbl 0724.32012

[4] Aizenberg, L. - Reich, S. - Shoikhet, D., One-sided estimates for the existence of null points of holomorphic mappings in Banach spaces. J. Math. Anal. Appl., 203, 1996, 38-54. | MR 1412480 | Zbl 0869.46025

[5] Arazy, J., An application of infinite dimensional holomorphy to the geometry of Banach spaces. Lecture Notes in Math., vol. 1267, Springer, Berlin1987, 122-150. | MR 907690 | Zbl 0622.46012

[6] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden1976. | MR 390843 | Zbl 0328.47035

[7] Berkson, E. - Porta, H., Semigroups of analytic functions and composition operators. Michigan Math. J., 25, 1978, 101-115. | MR 480965 | Zbl 0382.47017

[8] Brézis, H., Opérateurs Maximaux Monotones. North Holland, Amsterdam1973.

[9] Cartan, H., Sur les rétractions d'une variété. C. R. Acad. Sci. Paris, 303, 1986, 715-716. | MR 870703 | Zbl 0609.32021

[10] Chernoff, P. - Marsden, J. E., On continuity and smoothness of group actions. Bull. Amer. Math. Soc., 76, 1970, 1044-1049. | MR 265510 | Zbl 0202.23202

[11] Crandall, M. G. - Liggett, T. M., Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 1971, 265-298. | MR 287357 | Zbl 0226.47038

[12] Dineen, S., The Schwarz Lemma. Clarendon Press, Oxford1989. | MR 1033739 | Zbl 0708.46046

[13] Dineen, S. - Timoney, P. M. - Vigué, J. P., Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529. | MR 848840 | Zbl 0603.46052

[14] Earle, C. J. - Hamilton, R. S., A fixed point theorem for holomorphic mappings. Proc. Symp. Pure Math., vol. 16, Amer. Math. Soc., Providence, RI, 1970, 61-65. | MR 266009 | Zbl 0205.14702

[15] Franzoni, T. - Vesentini, E., Holomorphic Maps and Invariant Distances. North Holland, Amsterdam 1980. | MR 563329 | Zbl 0447.46040

[16] Gikhman, I. I. - Skorokhod, A. V., Theory of Random Processes. Nauka, Moscow 1973. | MR 341540 | Zbl 0348.60042

[17] Goebel, K. - Reich, S., Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York-Basel 1984. | MR 744194 | Zbl 0537.46001

[18] Harris, L. A., Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. Advances in Holomorphy, North Holland, Amsterdam1979, 345-406. | MR 520667 | Zbl 0409.46053

[19] Harris, T. E., The Theory of Branching Processes. Springer, Berlin1963. | MR 163361 | Zbl 0117.13002

[20] Helmke, U. - Moore, B., Optimization and Dynamical Systems. Springer, London 1994. | MR 1299725 | Zbl 0943.93001

[21] Jacobson, M. E., Computation of extinction probabilities for the Bellman-Harris branching process. Math. Biosciences, 77, 1985, 173-177. | MR 820410 | Zbl 0575.60085

[22] Khatskevich, V. - Reich, S. - Shoikhet, D., Ergodic type theorems for nonlinear semigroups with holomorphic generators. Recent Developments in Evolution Equations, Pitman Research Notes in Math., vol. 324, 1995, 191-200. | MR 1417074 | Zbl 0863.47053

[23] Khatskevich, V. - Reich, S. - Shoikhet, D., Global implicit function and fixed point theorems for holomorphic mappings and semigroups. Complex Variables, 28, 1996, 347-356. | MR 1700203 | Zbl 0843.58007

[24] Krasnoselski, M. A. - Zabreiko, P. P., Geometrical Methods of Nonlinear Analysis. Springer, Berlin 1984. | MR 736839

[25] Kuczumow, T. - Stachura, A., Iterates of holomorphic and kD-nonexpansive mappings in convex domains in Cn. Advances Math., 81, 1990, 90-98. | MR 1051224 | Zbl 0726.32016

[26] Mazet, P. - Vigué, J. P., Points fixes d'une application holomorphe d'un domaine borné dans lui-même. Acta Math., 166, 1991, 1-26. | MR 1088981 | Zbl 0733.32020

[27] Rudin, W., The fixed point sets of some holomorphic maps. Bull. Malaysian Math. Soc., 1, 1978, 25-28. | MR 506535 | Zbl 0413.32012

[28] Sevastyanov, B. A., Branching Processes. Nauka, Moscow1971. | MR 345229

[29] Shafrir, I., Coaccretive operators and firmly nonexpansive mappings in the Hilbert ball. Nonlinear Analysis, 18, 1992, 637-648. | MR 1157564 | Zbl 0752.47018

[30] Upmeier, H., Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics. CBMS - NSF Regional Conference Series in Math., AMS, Providence1987. | MR 874756 | Zbl 0608.17013

[31] Vesentini, E., Semigroups of holomorphic isometries. Advances Math., 65, 1987, 272-306. | MR 904726 | Zbl 0642.47035

[32] Vesentini, E., Krein spaces and holomorphic isometries of Cartan domains. In: S. Coen (ed.), Geometry and Complex Variables. Dekker, New York 1991, 409-413. | MR 1151658 | Zbl 0829.47029

[33] Vesentini, E., Semigroups of holomorphic isometries. In: S. Coen (ed.), Complex Potential Theory. Kluwer, Dordrecht 1994, 475-548. | MR 1332968 | Zbl 0802.46058

[34] Yosida, K., Functional Analysis. Springer, Berlin1968.