For a nonlinear hyperbolic equation defined in a thin domain we prove the existence of a periodic solution with respect to time both in the non-autonomous and autonomous cases. The methods employed are a combination of those developed by J. K. Hale and G. Raugel and the theory of the topological degree.
Si prova l'esistenza di soluzioni periodiche di un'equazione iperbolica smorzata definita in un dominio sottile sia nel caso autonomo che in quello non autonomo. I metodi impiegati sono una combinazione di quelli sviluppati da J. K. Hale e G. Raugel e la teoria del grado topologico.
@article{RLIN_1997_9_8_3_189_0, author = {Russell Johnson and Mikhail Kamenskii and Paolo Nistri}, title = {On the existence of periodic solutions of an hyperbolic equation in a thin domain}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {8}, year = {1997}, pages = {189-195}, zbl = {0910.35008}, mrnumber = {1611617}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1997_9_8_3_189_0} }
Johnson, Russell; Kamenskii, Mikhail; Nistri, Paolo. On the existence of periodic solutions of an hyperbolic equation in a thin domain. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997) pp. 189-195. http://gdmltest.u-ga.fr/item/RLIN_1997_9_8_3_189_0/
[1] Lower semicontinuity of attractors for a reaction-diffusion equation on thin domains with varying order of thinness. Preprint, Université de Paris-Sud, 1996. | MR 1383978
,[2] Reaction-diffusion equations on thin domains with varying order of thinness. Jour. Diff. Eqns., 126, 1996, 244-291. | MR 1383978 | Zbl 0849.35049
,[3] On the method of semidiscretization in periodic solutions problems for quasilinear autonomous parabolic equations. Differential Equations, 32, 1996, 101-106 (in Russian). | MR 1432954 | Zbl 0877.35057
- ,[4] A damped hyperbolic equation on thin domains. Trans. Am. Math. Soc., 329, 1992, 185-219. | MR 1040261 | Zbl 0761.35052
- ,[5] Reaction-diffusion equations in thin domains. Jour. Math. Pures et Appl., 71, 1992, 33-95. | MR 1151557 | Zbl 0840.35044
- ,[6] Limits of semigroups depending on parameters. Resenhas IME-USP, 1, 1993, 1-45. | MR 1257603 | Zbl 0863.58046
- ,[7] Existence of periodic solutions for an autonomous damped wave equation in a thin domain. Submitted. | Zbl 0910.35009
- - ,[8] On periodic solutions of a damped wave equation in a thin domain using degree theoretic methods. Jour. Diff. Eqns., to appear. | MR 1473860 | Zbl 0890.35078
- - ,[9] | MR 385645 | Zbl 0145.39703
- - - , Integral Operators in Spaces of Summable Functions. Noordhooff International Publishing, Leyden 1976.[10] | MR 247239
, Linear Differential Equations in Banach Spaces. Nauka, Moscow1967.[11] 1609, 208-315. | MR 1374110 | Zbl 0851.58038
, Dynamics of partial differential equations in thin domains. Lecture Notes in Mathematics, Springer-Verlag, Berlin1995,