The Hamilton-Jacobi-Bellman equation corresponding to a large class of distributed control problems is reduced to a linear parabolic equation having a regular solution. A formula for the first derivative is obtained.
L'equazione di Hamilton-Jacobi-Bellman corrispondente a un'ampia classe di problemi di controllo distribuiti viene ridotta a una equazione parabolica lineare avente una soluzione regolare. Viene inoltre ottenuta una formula per la derivata prima della soluzione.
@article{RLIN_1997_9_8_3_183_0, author = {Giuseppe Da Prato and Jerzy Zabczyk}, title = {Differentiability of the Feynman-Kac semigroup and a control application}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {8}, year = {1997}, pages = {183-188}, zbl = {0910.93025}, mrnumber = {1611613}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1997_9_8_3_183_0} }
Da Prato, Giuseppe; Zabczyk, Jerzy. Differentiability of the Feynman-Kac semigroup and a control application. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997) pp. 183-188. http://gdmltest.u-ga.fr/item/RLIN_1997_9_8_3_183_0/
[1] Some results on nonlinear optimal control problems and Hamilton-Jacobi equations infinite dimensions. J. Funct. Anal., 90, 1990, 27-47. | MR 1047576 | Zbl 0717.49022
- ,[2] Direct solution of a second order Hamilton-Jacobi equation in Hilbert spaces. In: - (eds.), Stochastic partial differential equations and applications. Pitman Research Notes in Mathematics Series n. 268, 1992, 72-85. | MR 1222689 | Zbl 0805.49016
- ,[3] Control of the stochastic Burgers model of turbulence. Scuola Normale Superiore preprint n. 4, Pisa 1996. | MR 1691934 | Zbl 1111.49302
- ,[4] Ergodicity for infinite dimensions. Enciclopedia of Mathematics and its Applications, Cambridge University Press, 1996. | MR 1417491 | Zbl 0761.60052
- ,[5] Stochastic flows on Riemannian manifolds. In: - (eds.), Diffusion Processes and Related Problems in Analysis. Birkhäuser, 1992, vol. II, 33-72. | MR 1187985 | Zbl 0758.58035
,[6] Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun, in partial differential equations, 20 (5&6), 1995, 775-826. | MR 1326907 | Zbl 0842.49021
,[7] Global regular solutions of second order Hamilton-Jacobi equations in Hilbert spaces with locally Lipschitz nonlinearities. Journal of Mathematical Analysis and Applications, 198, 1996, 399-443. | MR 1376272 | Zbl 0858.35129
,[8] Regular solutions of second order stationary Hamilton-Jacobi equations. J. Differential Equations, to appear. | MR 1409030 | Zbl 0864.34058
- ,[9] Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: The case of bounded stochastic evolution. Acta Math., 161, 1988, 243-278. | MR 971797 | Zbl 0757.93082
,[10] Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part II: Optimal control fo Zakai's equation. In: - (eds.), Stochastic Partial Differential Equations and Applications. Lecture Notes in Mathematics No. 1390, Springer-Verlag, 1989, 147-170. | MR 1019600 | Zbl 0757.93083
,[11] Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part III: Uniqueness of viscosity solutions for general second order equations. J. Funct. Anal., 86, 1989, 1-18. | MR 1013931 | Zbl 0757.93084
,[12] Strong Feller property and irreducibility for diffusions on Hilbert spaces. Annals of Probability, 1996. | MR 1330765 | Zbl 0831.60083
- ,[13] Viscosity solutions of fully nonlinear partial differential equations with «unbounded» terms in infinite dimensions. Ph. D. Thesis, University of California at Santa Barbara, 1993. | MR 2690118
,