Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff
Bertotti, Maria Letizia ; Bolotin, Sergey V.
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997), p. 93-100 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider Lagrangian systems with Lagrange functions which exhibit a quadratic time dependence. We prove the existence of infinitely many solutions tending, as t±, to an «equilibrium at infinity». This result is applied to the Kirchhoff problem of a heavy rigid body moving through a boundless incompressible ideal fluid, which is at rest at infinity and has zero vorticity.

Consideriamo sistemi lagrangiani con funzione lagrangiana dipendente in modo quadratico dal tempo. Proviamo l'esistenza di infinite soluzioni che tendono, quando t± ad un «equilibrio all'infinito». Il risultato è applicato al problema di Kirchhoff di un corpo rigido mobile in un fluido ideale incomprimibile illimitato, che è in quiete all'infinito ed ha vorticità nulla.

Publié le : 1997-07-01
@article{RLIN_1997_9_8_2_93_0,
     author = {Maria Letizia Bertotti and Sergey V. Bolotin},
     title = {Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {8},
     year = {1997},
     pages = {93-100},
     zbl = {0892.70012},
     mrnumber = {1485320},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1997_9_8_2_93_0}
}
Bertotti, Maria Letizia; Bolotin, Sergey V. Doubly asymptotic trajectories of Lagrangian systems and a problem by Kirchhoff. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997) pp. 93-100. http://gdmltest.u-ga.fr/item/RLIN_1997_9_8_2_93_0/

[1] Arnold, V. I. - Kozlov, V. V. - Neishtadt, A. I., Dynamical systems III. VINITI, Moscow 1985; English transl. in Springer-Verlag, New York-Heidelberg-Berlin 1988. | MR 923953

[2] Bertotti, M. L. - Bolotin, S. V., Doubly asymptotic trajectories of Lagrangian systems in homogeneous force fields. Annali di Matematica Pura e Applicata, in press. | Zbl 0971.70021

[3] Bolotin, S. V., The existence of homoclinic motions. Vestnik Moskov Univ., ser. I, Matem., Mekhan., 6, 1983, 98-103 (in Russian); English transl. in Moscow Univ. Math. Boll., 38, 1983, 117-123. | MR 728558 | Zbl 0549.58019

[4] Bolotin, S. V. - Kozlov, V. V., On the asymptotic solutions of the equations of dynamics. Vestnik Moskov Univ., ser. I, Matem., Mekhan., 4, 1980, 84-89 (in Russian); English transl. in Moscow Univ. Math. Boll., 35, 1980, 82-88. | MR 585456 | Zbl 0439.70020

[5] Chaplygin, S. A., On the motion of heavy bodies in an incompressible fluid, Collected papers 1. Izd-vo Akad. Nauk SSSR, Leningrad1933, 133-150 (in Russian).

[6] Eells, J., A setting for global analysis. Bull. Amer. Math. Soc., 72, 1966, 751-807. | MR 203742 | Zbl 0191.44101

[7] Giannoni, F. - Rabinowttz, P. H., On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian systems. Nonlinear Differential Equations and Applications, 1, 1993, 1-46. | MR 1273342 | Zbl 0823.34050

[8] Hagedorn, P., Über die Instabilität konservativer Systeme mit gyroskopischen Kräften. Arch. Rat. Mech. Anal., 58, 1975, 1-9. | MR 395417 | Zbl 0329.70008

[9] Kirchhoff, G., Über die Bewegung eines Rotationskörpers in einer Flüssigkeit. J. für die reine und angewandte Mathematik, 71, 1870, 237-262. | JFM 02.0731.01

[10] Kozlov, V. V., On the fall of an heavy rigid body in a ideal fluid. Meck. Tverd. Tela, 5, 1989, 10-17 (in Russian). | Zbl 1119.70009

[11] Kozlov, V. V., On the stability of equilibrium positions in nonstationary force fields. J. Appl. Math. Mech., 55, 1991, 8-13. | MR 1107493 | Zbl 0747.70017

[12] Lamb, H., Hydrodynamics. Dover Publications, New York1945. | JFM 36.0817.07

[13] Palais, R. S., Morse theory on Hilbert manifolds. Topology, 2, 1963, 299-340. | MR 158410 | Zbl 0122.10702

[14] Palais, R. S. - Smale, S., A generalized Morse theory. Bull. Amer. Math. Soc., 70, 1964, 165-171. | MR 158411 | Zbl 0119.09201