A special version of the Schwarz lemma on an infinite dimensional domain
Honda, Tatsuhiro
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997), p. 107-110 / Harvested from Biblioteca Digitale Italiana di Matematica

Let B be the open unit ball of a Banach space E, and let f:BB be a holomorphic map with f0=0. In this paper, we discuss a condition whereby f is a linear isometry on E.

Sia B il disco unità aperto di uno spazio di Banach complesso. Si determina una condizione perché un'applicazione olomorfa f:BB, con f0=0, sia un'isometria lineare.

Publié le : 1997-07-01
@article{RLIN_1997_9_8_2_107_0,
     author = {Tatsuhiro Honda},
     title = {A special version of the Schwarz lemma on an infinite dimensional domain},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {8},
     year = {1997},
     pages = {107-110},
     zbl = {0890.32012},
     mrnumber = {1485322},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1997_9_8_2_107_0}
}
Honda, Tatsuhiro. A special version of the Schwarz lemma on an infinite dimensional domain. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997) pp. 107-110. http://gdmltest.u-ga.fr/item/RLIN_1997_9_8_2_107_0/

[1] Belkhchicha, L., Caractérisation des isomorphismes analytiques sur la boule-unité de Cn pour une norme. Math. Z., 215, 1994, 129-141. | MR 1254816 | Zbl 0801.32009

[2] Dineen, S., Complex Analysis in Locally Convex Spaces. North-HollandMath. Studies, 57, 1981. | MR 640093 | Zbl 0484.46044

[3] Dineen, S., The Schwarz Lemma. Oxford Mathematical Monographs, 1989. | MR 1033739 | Zbl 0708.46046

[4] Dineen, S. - Timoney, R. M., Complex Geodesics on Convex Domains. Progress in Functional Analysis, 1992, 333-365. | MR 1150757 | Zbl 0785.46044

[5] Dineen, S. - Timoney, R. M. - Vigué, J. P., Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529. | MR 848840 | Zbl 0603.46052

[6] Franzoni, T. - Vesentini, E., Holomorphic Maps and Invariant Distances. North-Holland Math. Studies, 40, 1980. | MR 563329 | Zbl 0447.46040

[7] Jarnicki, M. - Pflug, P., Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin-New York 1983. | MR 1242120 | Zbl 0789.32001

[8] Hamada, H., A Schwarz lemma in several complex variables. In: Proceedings of the Third International Colloquium on Finite or Infinite Dimensional Complex Analysis. Seoul, Korea, 1995, 105-110.

[9] Nishihara, M., On the indicator of growth of entire functions of exponential type in infinite dimensional spaces and the Levi problem in infinite dimensional projective spaces. Portugaliae Math., 52, 1995, 61-94. | MR 1324083 | Zbl 0935.32003

[10] Vesentini, E., Variations on a theme of Carathéodory. Ann. Scuola Norm. Sup. Pisa, 7 (4), 1979, 39-68. | MR 529475 | Zbl 0413.46039

[11] Vesentini, E., Complex geodesics. Compositio Math., 44, 1981, 375-394. | MR 662466 | Zbl 0488.30015

[12] Vesentini, E., Complex geodesics and holomorphic maps. Sympos. Math., 26, 1982, 211-230. | MR 663034 | Zbl 0506.32008

[13] Vigué, J. P., Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes. Indiana Univ. Math. J., 40, 1991, 239-304. | Zbl 0733.32025

[14] Vigué, J. P., Le lemme de Schwarz et la caractérisation des automorphismes analytiques. Astérisque, 217, 1993, 241-249. | Zbl 0798.32023