We study a variational formulation for a Stefan problem in two adjoining bodies, when the heat conductivity of one of them becomes infinitely large. We study the «concentrated capacity» model arising in the limit, and we justify it by an asymptotic analysis, which is developed in the general framework of the abstract evolution equations of monotone type.
Si studia la formulazione variazionale del problema di Stefan in due corpi adiacenti, in uno dei quali la conducibilità termica tende all'infinito. Utilizzando e sviluppando alcuni concetti e metodi della teoria della -convergenza e delle equazioni di evoluzione astratte negli spazi di Hilbert, si riesce a giustificare il modello limite, che rientra nella classe dei problemi in «capacità concentrata».
@article{RLIN_1997_9_8_1_49_0, author = {Giuseppe Savar\'e and Augusto Visintin}, title = {Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {8}, year = {1997}, pages = {49-89}, zbl = {0888.35139}, mrnumber = {1484545}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1997_9_8_1_49_0} }
Savaré, Giuseppe; Visintin, Augusto. Variational convergence of nonlinear diffusion equations: applications to concentrated capacity problems with change of phase. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 8 (1997) pp. 49-89. http://gdmltest.u-ga.fr/item/RLIN_1997_9_8_1_49_0/
[1] Reinforcement problems in the calculus of variations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 3, 1986, 273-284. | MR 853383 | Zbl 0607.73018
- ,[2] Existence and uniqueness of solutions to a concentrated capacity problem with change of phase. Europ. J. Appl. Math., 1, 1990, 330-351. | MR 1117356 | Zbl 0734.35161
,[3] | MR 773850 | Zbl 0561.49012
, Variational Convergence for Functions and Operators. Pitman, London1984.[4] | Zbl 0512.53044
, Non linear Analysis on Manifolds. Monge-Ampère Equations. Springer, New York1982.[5] Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. Proc. Symp. by the Mathematics Research Center, Madison, Wisconsin, Academic Press, New York1971, 101-156. | MR 394323 | Zbl 0278.47033
,[6] | Zbl 0252.47055
, Opérateurs maximaux monotones et sémi-groupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam1973.[7] Reinforcement problems for elliptic equations and variational inequalities. Ann. Mat. pura e appl., 123 (IV), 1980, 219-246. | MR 581931 | Zbl 0434.35079
- - ,[8] On diffusion in a fractured medium. SIAM J. Appl. Math., 20(3), 1971, 434-448. | Zbl 0266.35002
- ,[9] | MR 1071376 | Zbl 0706.73046
, Plates and junctions in Elastic Multi-Structures. Masson-Springer-Verlag, Paris1990.[10] | MR 709590 | Zbl 0582.49001
, Optimization and Nonsmooth Analysis. Wiley, New York1983.[11] Diffusion through thin layers with high specific heat. Asymptotic Anal., 3, 1990, 249-263. | MR 1076450 | Zbl 0724.35010
- ,[12] | MR 1201152
, An Introduction to -Convergence. Birkhäuser, Boston1993.[13] Some results on the multi-phase Stefan problem. Comm. P.D.E., 2, 1977, 1017-1044. | MR 487015 | Zbl 0399.35054
,[14] How to homogenize a nonlinear diffusion equation: Stefan's problem. SIAM J. Math. Anal., 12, 1981, 306-313. | MR 613313 | Zbl 0468.35052
,[15] Shape analysis via oriented distance functions. J. Funct. Anal., 86, 1989, 129-201. | MR 1279299 | Zbl 0814.49032
- ,[16] A boundary differential equation for thin shells. J. Differential Equations, to appear. | Zbl 0827.73038
- ,[17] Implicit degenerate evolution equations and applications. SIAM J. Math. Anal., 12, 1981, 731-751. | MR 625829 | Zbl 0477.47037
- ,[18] | MR 463993 | Zbl 0281.49001
- , Analyse Convexe et Problèmes Variationnels. Dunod, Gauthier-Villars, Paris 1974.[19] | MR 1158660 | Zbl 0804.28001
- , Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics, CRC Press, 1992.[20] A model problem for heat conduction with a free boundary in a concentrated capacity. J. Inst. Maths. Applics., 26, 1980, 327-347. | MR 605396 | Zbl 0456.35093
- - ,[21] | MR 737190 | Zbl 0562.35001
- , Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin 1983.[22] | MR 1130395
, Problèmes variationnels dans les multi-domaines. Masson, Paris1991.[23] | MR 259693 | Zbl 0189.40603
, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod, Gauthier-Villars, Paris1969.[24] | Zbl 0223.35039
- , Non Homogeneous Boundary Value Problems and Applications I, II. Springer Verlag, Berlin 1972.[25] On a Stefan problem on a boundary of a domain. In: (ed.), Partial Differential Equations and Related Subjects. Longman Scient. Techn., 1992, 209-226. | MR 1190942 | Zbl 0803.35170
,[26] Some new results on a Stefan problem in a concentrated capacity. Rend. Mat. Acc. Lincei, s. 9, v. 3, 1992, 23-34. | MR 1159996 | Zbl 0767.35110
,[27] The Stefan problem in a concentrated capacity. In: (ed.), Atti Simp. Int. «Problemi attuali dell'Analisi e della Fisica Matematica». Dip. di Matematica, Univ. «La Sapienza», Roma 1993, 155-182. | MR 1249096 | Zbl 0803.35171
,[28] Regularity and approximation properties for the solution of a Stefan problem in a concentrated capacity. Proc. Int. Workshop Variational Methods, Nonlinear Analysis and Differential Equations. E.C.I.G., Genova, 1994, 88-106.
,[29] On a Stefan problem in a concentrated capacity. In: - - (eds.), P.D.E. and Applications. Marcel Dekker, Inc., 1996, 237-253. | MR 1371595 | Zbl 0864.35127
,[30] Stefan problems in a concentrated capacity. Adv. Math. Comp. and Appl., Proc. AMCA 95, N.C.C. Pubbl., Novosibirsk1996, 82-90. | MR 1701426 | Zbl 0803.35171
,[31] Convergence of convex sets and of solutions of variational inequalities. Adv. in Math., 3, 1969, 510-585. | MR 298508 | Zbl 0192.49101
,[32] On the continuity of the Young-Fenchel transformation. J. Math. Anal. Appl., 35, 1971, 518-535. | MR 283586 | Zbl 0253.46086
,[33] Phénomènes de transmission à travers des couches minces de conductivité élevée. J. Math. Anal, and Appl., 47, 1974, 284-309. | MR 400916 | Zbl 0286.35007
- ,[34] The Stefan problem: Comments on its present state. J. Inst. Maths. Applics., 24, 1979, 259-277. | MR 550476 | Zbl 0434.35086
,[35] Problèmes de perturbations liés aux phénomènes de conduction à travers des couches minces de grande résistivité. J. Math. pures et appl., 53, 1974, 251-270. | MR 364917 | Zbl 0273.35007
,[36] 127, Springer, Berlin-Heidelberg-New York1980. | MR 578345 | Zbl 0432.70002
, Non Homogeneous Media and Vibration Theory. Lect. Notes in Phys.[37] Existence and continuity of a weak solution to the problem of a free boundary in a concentrated capacity. Proc. Roy. Soc. Edinburgh, Sect. A. 100, 1985, 271-280. | MR 807706 | Zbl 0591.35086
,[38] Partial differential equations in domains with self contact. Rend. Sem. Mat. Univ. Padova, 81, 1989, 37-48. | MR 1020184 | Zbl 0696.35031
,