Let be a Riemannian manifold, which possesses a transitive Lie group of isometries. We suppose that , and therefore , are compact and connected. We characterize the Sobolev spaces by means of the action of on . This characterization allows us to prove a regularity result for the solution of a second order differential equation on by global techniques.
Sia una varietà riemanniana, dotata di un gruppo di Lie transitivo di isometrie. Si suppone che , e pertanto , siano compatti e connessi. Si caratterizzano gli spazi di Sobolev tramite l'azione di su . Questa caratterizzazione permette di dimostrare tramite tecniche globali un risultato di regolarità per la soluzione di un'equazione differenziale del secondo ordine su .
@article{RLIN_1996_9_7_4_219_0, author = {Cristiana Bondioli}, title = {Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {7}, year = {1996}, pages = {219-233}, zbl = {0938.46031}, mrnumber = {1454416}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1996_9_7_4_219_0} }
Bondioli, Cristiana. Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996) pp. 219-233. http://gdmltest.u-ga.fr/item/RLIN_1996_9_7_4_219_0/
[1] | MR 450957 | Zbl 1098.46001
, Sobolev Spaces. Academic Press, New York1975.[2] | MR 681859 | Zbl 0512.53044
, Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Springer-Verlag, New York-Heidelberg-Berlin1982.[3] Function spaces , , characterized by the motions of . Annali Mat. Pura Appl., to appear. | MR 1625535
- ,[4] Sobolev inequalities on homogeneous spaces. Potential Analysis, 4, 1995, 311-324. | MR 1354886 | Zbl 0833.46020
- ,[5] Function spaces of Nikolskii type on compact manifolds. Rend. Mat. Acc. Lincei, s. 9, v. 3, 1992, 185-194. | MR 1186914 | Zbl 0772.46015
,[6] A regularity result of Nikolskii type for an evolution equation on compact homogeneous spaces. Math. Nachr., 166, 1994, 273-285. | MR 1273338 | Zbl 0837.35035
,[7] | MR 697382 | Zbl 0511.46001
, Analyse fonctionnelle. Masson, Paris1983.[8] 242, Springer-Verlag, Berlin-Heidelberg-New York 1971. | MR 499948 | Zbl 0224.43006
- , Analyse harmonique sur certaines espaces homogènes. Lectures Notes in Mathematics, n.[9] | MR 754767 | Zbl 0543.58001
, Groups and Geometric Analysis. Academic Press, New York1984.[10] Approximations of functions on manifolds. In: - (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner, Stuttgart-Leipzig 1993, 185-199. | MR 1242583 | Zbl 0798.41029
- ,[11] | MR 346831 | Zbl 0233.58001
, Differentiable Manifolds. Marcel Dekkar Inc., New York1972.[12] 1985 (translation from Russian, Leningrad Univ., 1985). | MR 817985 | Zbl 0692.46023
, Sobolev Spaces. Springer-Verlag, New York-Heidelberg-Berlin[13] Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math., 8, 1955, 648-674. | MR 75415 | Zbl 0067.07602
,[14] Hypoelliptic differential operators and nilpotent groups. Acta Math., 137, 1976, 247-320. | MR 436223 | Zbl 0346.35030
- ,[15] Function spaces of Sobolev type on Riemannian symmetric manifolds. Forum Math., 3, 1991, 339-353. | MR 1115951 | Zbl 0738.46018
,[16] | MR 1163193 | Zbl 0546.46027
, Theory of Function Spaces II. Birkhäuser, Basel-Boston-Berlin1992.[17] | MR 498996 | Zbl 0265.22022
, Harmonic Analysis on Homogeneous Spaces. Marcel Dekkar Inc., New York1973.[18]
, Foundation of Differential Manifolds and Lie Groups. Academic Press, New York1971.