Sobolev spaces of integer order on compact homogeneous manifolds and invariant differential operators
Bondioli, Cristiana
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996), p. 219-233 / Harvested from Biblioteca Digitale Italiana di Matematica

Let M be a Riemannian manifold, which possesses a transitive Lie group G of isometries. We suppose that G, and therefore M, are compact and connected. We characterize the Sobolev spaces Wp1M1<p<+ by means of the action of G on M. This characterization allows us to prove a regularity result for the solution of a second order differential equation on M by global techniques.

Sia M una varietà riemanniana, dotata di un gruppo di Lie G transitivo di isometrie. Si suppone che G, e pertanto M, siano compatti e connessi. Si caratterizzano gli spazi di Sobolev Wp1M1<p<+ tramite l'azione di G su M. Questa caratterizzazione permette di dimostrare tramite tecniche globali un risultato di regolarità per la soluzione di un'equazione differenziale del secondo ordine su M.

Publié le : 1996-12-01
@article{RLIN_1996_9_7_4_219_0,
     author = {Cristiana Bondioli},
     title = {Sobolev spaces of integer order on compact homogeneous	manifolds and invariant differential operators},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {7},
     year = {1996},
     pages = {219-233},
     zbl = {0938.46031},
     mrnumber = {1454416},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1996_9_7_4_219_0}
}
Bondioli, Cristiana. Sobolev spaces of integer order on compact homogeneous	manifolds and invariant differential operators. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996) pp. 219-233. http://gdmltest.u-ga.fr/item/RLIN_1996_9_7_4_219_0/

[1] Adams, R. A., Sobolev Spaces. Academic Press, New York1975. | MR 450957 | Zbl 1098.46001

[2] Aubin, T., Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Springer-Verlag, New York-Heidelberg-Berlin1982. | MR 681859 | Zbl 0512.53044

[3] Bernardi, M. P. - Bondioli, C., Function spaces W1,p, BV, Nλ,p characterized by the motions of Rn. Annali Mat. Pura Appl., to appear. | MR 1625535

[4] Biroli, M. - Mosco, U., Sobolev inequalities on homogeneous spaces. Potential Analysis, 4, 1995, 311-324. | MR 1354886 | Zbl 0833.46020

[5] Bondioli, C., Function spaces of Nikolskii type on compact manifolds. Rend. Mat. Acc. Lincei, s. 9, v. 3, 1992, 185-194. | MR 1186914 | Zbl 0772.46015

[6] Bondioli, C., A regularity result of Nikolskii type for an evolution equation on compact homogeneous spaces. Math. Nachr., 166, 1994, 273-285. | MR 1273338 | Zbl 0837.35035

[7] Brézis, H., Analyse fonctionnelle. Masson, Paris1983. | MR 697382 | Zbl 0511.46001

[8] Coifman, R. R. - Weiss, G., Analyse harmonique sur certaines espaces homogènes. Lectures Notes in Mathematics, n. 242, Springer-Verlag, Berlin-Heidelberg-New York 1971. | MR 499948 | Zbl 0224.43006

[9] Helgason, S., Groups and Geometric Analysis. Academic Press, New York1984. | MR 754767 | Zbl 0543.58001

[10] Lizorkin, P. I. - Nikol'Sktj, S. M., Approximations of functions on manifolds. In: H. J. Schmeisser - H. Triebel (eds.), Function Spaces, Differential Operators and Nonlinear Analysis. Teubner, Stuttgart-Leipzig 1993, 185-199. | MR 1242583 | Zbl 0798.41029

[11] Matsushima, Y., Differentiable Manifolds. Marcel Dekkar Inc., New York1972. | MR 346831 | Zbl 0233.58001

[12] Maz'Ya, V. G., Sobolev Spaces. Springer-Verlag, New York-Heidelberg-Berlin1985 (translation from Russian, Leningrad Univ., 1985). | MR 817985 | Zbl 0692.46023

[13] Nirenberg, L., Remarks on strongly elliptic partial differential equations. Comm. Pure Appl. Math., 8, 1955, 648-674. | MR 75415 | Zbl 0067.07602

[14] Rotschild, L. P. - Stein, E. M., Hypoelliptic differential operators and nilpotent groups. Acta Math., 137, 1976, 247-320. | MR 436223 | Zbl 0346.35030

[15] Skrzypczak, L., Function spaces of Sobolev type on Riemannian symmetric manifolds. Forum Math., 3, 1991, 339-353. | MR 1115951 | Zbl 0738.46018

[16] Triebel, H., Theory of Function Spaces II. Birkhäuser, Basel-Boston-Berlin1992. | MR 1163193 | Zbl 0546.46027

[17] Wallach, N. R., Harmonic Analysis on Homogeneous Spaces. Marcel Dekkar Inc., New York1973. | MR 498996 | Zbl 0265.22022

[18] Warner, F., Foundation of Differential Manifolds and Lie Groups. Academic Press, New York1971.