Some results on elliptic and parabolic equations in Hilbert spaces
Da Prato, Giuseppe
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996), p. 181-199 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider elliptic and parabolic equations with infinitely many variables. We prove some results of existence, uniqueness and regularity of solutions.

In questo lavoro si considerano equazioni ellittiche e paraboliche con un numero finito di variabili. Si provano risultati di esistenza, unicità e regolarità delle soluzioni.

Publié le : 1996-12-01
@article{RLIN_1996_9_7_3_181_0,
     author = {Giuseppe Da Prato},
     title = {Some results on elliptic and parabolic equations in Hilbert spaces},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {7},
     year = {1996},
     pages = {181-199},
     zbl = {0881.47018},
     mrnumber = {1454413},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1996_9_7_3_181_0}
}
Da Prato, Giuseppe. Some results on elliptic and parabolic equations in Hilbert spaces. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996) pp. 181-199. http://gdmltest.u-ga.fr/item/RLIN_1996_9_7_3_181_0/

[1] Cannarsa, P. - Da Prato, G., On a functional analysis approach to parabolic equations in infinite dimensions. J. Funct. Anal., 118, 1, 1993, 22-42. | MR 1245596 | Zbl 0787.35115

[2] Cannarsa, P. - Da Prato, G., Infinite dimensional elliptic equations with Hölder continuous coefficients. Advances in Differential Equations, 1, 3, 1996, 425-452. | MR 1401401 | Zbl 0926.35153

[3] Cannarsa, P. - Da Prato, G., Schauder estimates for Kolmogorov equations in Hilbert spaces. Proceedings of the meeting on Elliptic and Parabolic PDE's and Applications (Capri, September 1994). To appear. | MR 1430142 | Zbl 0890.35159

[4] Cerrai, S., A Hille-Yosida Theorem for weakly continuous semigroups. Semigroup Forum, 49, 1994, 349-367 | MR 1293091 | Zbl 0817.47048

[5] Cerrai, S. - Gozzi, F., Strong solutions of Cauchy problems associated to weakly continuous semigroups. Differential and Integral Equations, 8, 3, 1994, 465-486. | MR 1306569 | Zbl 0822.47040

[6] Da Prato, G., Transition semigroups associated with Kolmogorov equations in Hilbert spaces. In: M. Chipot - J. Saint Jean Paulin - I. Shafrir (eds.), Progress in Partial Differential Equations: the Metz Surveys 3. Pitman Research Notes in Mathematics Series, no. 314, 1994, 199-214. | MR 1316200 | Zbl 0908.47034

[7] Da Prato, G. - Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | MR 1343161 | Zbl 0846.47004

[8] Da Prato, G. - Zabczyk, J., Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992. | MR 1207136 | Zbl 0761.60052

[9] Daleckij, Ju. L., Differential equations with functional derivatives and stochastic equations for generalized random processes. Dokl. Akad. Nauk SSSR, 166, 1966, 1035-1038. | MR 214943 | Zbl 0305.35084

[10] Dunford, N. - Schwartz, J. T., Linear Operators. Vol. II, 1956. | Zbl 0084.10402

[11] Gross, L., Potential Theory in Hilbert spaces. J. Funct. Anal., 1, 1965, 139-189. | Zbl 0165.16403

[12] Kuo, H. H., Gaussian Measures in Banach Spaces. Springer-Verlag, 1975. | MR 461643 | Zbl 0306.28010

[13] Lasry, J. M. - Lions, P. L., A remark on regularization in Hilbert spaces. Israel J. Math., 55, 3, 1986, 257-266. | MR 876394 | Zbl 0631.49018

[14] Lions, J. L. - Peetre, J., Sur une classe d'espaces d'interpolation. Publ. Math. de l'I.H.E.S., 19, 1964, 5-68. | MR 165343 | Zbl 0148.11403

[15] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser Verlag, Basel1995. | MR 1329547 | Zbl 0816.35001

[16] Lunardi, A., An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, to appear. | MR 1406778 | Zbl 0859.47030

[17] Nemirovki, A. S. - Semenov, S. M., The polynomial approximation of functions in Hilbert spaces. Mat. Sb. (N.S.), 92, 134, 1973, 257-281. | MR 632033 | Zbl 0286.41025

[18] Piech, A., Regularity of the Greens operator in Abstract Wiener Space. J. Diff. Eq., 12, 1969, 353-360. | Zbl 0228.47034

[19] Piech, A., A fundamental solution of the parabolic equation on Hilbert space. J. Funct. Anal., 3, 1972, 85-114. | Zbl 0169.47103

[20] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam1986. | MR 503903 | Zbl 0387.46032