We consider elliptic and parabolic equations with infinitely many variables. We prove some results of existence, uniqueness and regularity of solutions.
In questo lavoro si considerano equazioni ellittiche e paraboliche con un numero finito di variabili. Si provano risultati di esistenza, unicità e regolarità delle soluzioni.
@article{RLIN_1996_9_7_3_181_0, author = {Giuseppe Da Prato}, title = {Some results on elliptic and parabolic equations in Hilbert spaces}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {7}, year = {1996}, pages = {181-199}, zbl = {0881.47018}, mrnumber = {1454413}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1996_9_7_3_181_0} }
Da Prato, Giuseppe. Some results on elliptic and parabolic equations in Hilbert spaces. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996) pp. 181-199. http://gdmltest.u-ga.fr/item/RLIN_1996_9_7_3_181_0/
[1] On a functional analysis approach to parabolic equations in infinite dimensions. J. Funct. Anal., 118, 1, 1993, 22-42. | MR 1245596 | Zbl 0787.35115
- ,[2] Infinite dimensional elliptic equations with Hölder continuous coefficients. Advances in Differential Equations, 1, 3, 1996, 425-452. | MR 1401401 | Zbl 0926.35153
- ,[3] Schauder estimates for Kolmogorov equations in Hilbert spaces. Proceedings of the meeting on Elliptic and Parabolic PDE's and Applications (Capri, September 1994). To appear. | MR 1430142 | Zbl 0890.35159
- ,[4] A Hille-Yosida Theorem for weakly continuous semigroups. Semigroup Forum, 49, 1994, 349-367 | MR 1293091 | Zbl 0817.47048
,[5] Strong solutions of Cauchy problems associated to weakly continuous semigroups. Differential and Integral Equations, 8, 3, 1994, 465-486. | MR 1306569 | Zbl 0822.47040
- ,[6] Transition semigroups associated with Kolmogorov equations in Hilbert spaces. In: - - (eds.), Progress in Partial Differential Equations: the Metz Surveys 3. Pitman Research Notes in Mathematics Series, no. 314, 1994, 199-214. | MR 1316200 | Zbl 0908.47034
,[7] On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | MR 1343161 | Zbl 0846.47004
- ,[8] | MR 1207136 | Zbl 0761.60052
- , Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1992.[9] Differential equations with functional derivatives and stochastic equations for generalized random processes. Dokl. Akad. Nauk SSSR, 166, 1966, 1035-1038. | MR 214943 | Zbl 0305.35084
,[10] Linear Operators. Vol. II, 1956. | Zbl 0084.10402
- ,[11] Potential Theory in Hilbert spaces. J. Funct. Anal., 1, 1965, 139-189. | Zbl 0165.16403
,[12] | MR 461643 | Zbl 0306.28010
, Gaussian Measures in Banach Spaces. Springer-Verlag, 1975.[13] A remark on regularization in Hilbert spaces. Israel J. Math., 55, 3, 1986, 257-266. | MR 876394 | Zbl 0631.49018
- ,[14] Sur une classe d'espaces d'interpolation. Publ. Math. de l'I.H.E.S., 19, 1964, 5-68. | MR 165343 | Zbl 0148.11403
- ,[15] | MR 1329547 | Zbl 0816.35001
, Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser Verlag, Basel1995.[16] An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, to appear. | MR 1406778 | Zbl 0859.47030
,[17] The polynomial approximation of functions in Hilbert spaces. Mat. Sb. (N.S.), 92, 134, 1973, 257-281. | MR 632033 | Zbl 0286.41025
- ,[18] Regularity of the Greens operator in Abstract Wiener Space. J. Diff. Eq., 12, 1969, 353-360. | Zbl 0228.47034
,[19] A fundamental solution of the parabolic equation on Hilbert space. J. Funct. Anal., 3, 1972, 85-114. | Zbl 0169.47103
, , Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam1986.