We give a new proof, based on analytic semigroup methods, of a maximal regularity result concerning the classical Cauchy-Dirichlet's boundary value problem for second order parabolic equations. More specifically, we find necessary and sufficient conditions on the data in order to have a strict solution which is bounded with values in (0 < \theta < 1), with bounded with values in .
Si dà una nuova dimostrazione, basata su metodi di semigruppi analitici, di un risultato di regolarità massimale per il classico problema al contorno di Cauchy-Dirichlet per equazioni paraboliche del secondo ordine. Più specificamente, si trovano condizioni necessarie e sufficienti sui dati per avere una soluzione stretta che sia limitata a valori in con limitata a valori in .
@article{RLIN_1996_9_7_3_161_0, author = {Davide Guidetti}, title = {The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are h\"older continuous with respect to space variables}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {7}, year = {1996}, pages = {161-168}, zbl = {0871.35045}, mrnumber = {1454411}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1996_9_7_3_161_0} }
Guidetti, Davide. The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996) pp. 161-168. http://gdmltest.u-ga.fr/item/RLIN_1996_9_7_3_161_0/
[1] Hölder classes with boundary conditions as interpolation spaces. Math. Zeit., 195, 1987, 451-471. | MR 900340 | Zbl 0635.35024
- ,[2] Estimation de la résolvante du problème de Dirichlet dans les espaces de Hölder. C. R. Acad. Sci. Paris, 305, Serie I, 1987, 253-256. | MR 907955 | Zbl 0634.35055
- - ,[3] On elliptic problems in Besov spaces. Math. Nachr., 152, 1991, 247-275. | MR 1121237 | Zbl 0767.46027
,[4] Parabolic interior Schauder estimates by the maximum principle. Arch. Rat. Mech. Anal., 75, 1980, 51-58. | MR 592103 | Zbl 0468.35014
,[5] Mayoraciones de Schauder y theorema de existencia de las soluciónes del problema de Cauchy para ecuaciones parabolicas lineales y no lineales (I). Revista Ciencias Matemáticas, vol. 1, n. 1, 1980, 55-76. | MR 622442 | Zbl 0572.35046
- - ,[6] Primer problema de contorno para ecuaciones parabolicas lineales y no lineales. Revista Ciencias Matemáticas, vol. 13, n. 1, 1992, 3-20. | MR 1206783
,[7] 16, Birkhäuser, 1995. | MR 1329547 | Zbl 0816.35001
, Analytic semigroups and optimal regularity in the parabolic problems. Progress in Nonlinear Differential Equations and Their Applications, vol.[8] A semigroup approach to the time dependent parabolic initial boundary value problem. Diff. Int. Equations, 63, 1992, 88-116. | Zbl 0596.45019
- - ,[9] On the solutions of the first boundary value problem for the linear parabolic problem. Proc. Royal Soc. Edinburgh, 108A, 1988, 339-355. | MR 943808 | Zbl 0664.35041
- ,[10] 83 (1965), (ed. ); Amer. Math. Soc, 1967. | MR 211083 | Zbl 0164.12502
, On the boundary value problems for linear parabolic systems of differential equations of general form. Proc. Steklov Inst. Math.,[11] Generation of analytic semigroups by strongly elliptic operators under general boundary conditions. Trans. Amer. Math. Soc., 259, 1980, 299-310. | MR 561838 | Zbl 0451.35033
,