The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables
Guidetti, Davide
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996), p. 161-168 / Harvested from Biblioteca Digitale Italiana di Matematica

We give a new proof, based on analytic semigroup methods, of a maximal regularity result concerning the classical Cauchy-Dirichlet's boundary value problem for second order parabolic equations. More specifically, we find necessary and sufficient conditions on the data in order to have a strict solution u which is bounded with values in C2+θΩ¯ (0 < \theta < 1), with tu bounded with values in CθΩ¯.

Si dà una nuova dimostrazione, basata su metodi di semigruppi analitici, di un risultato di regolarità massimale per il classico problema al contorno di Cauchy-Dirichlet per equazioni paraboliche del secondo ordine. Più specificamente, si trovano condizioni necessarie e sufficienti sui dati per avere una soluzione stretta u che sia limitata a valori in C2+θΩ¯ con tu limitata a valori in CθΩ¯.

Publié le : 1996-12-01
@article{RLIN_1996_9_7_3_161_0,
     author = {Davide Guidetti},
     title = {The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are h\"older continuous with respect to space variables},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {7},
     year = {1996},
     pages = {161-168},
     zbl = {0871.35045},
     mrnumber = {1454411},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1996_9_7_3_161_0}
}
Guidetti, Davide. The parabolic mixed Cauchy-Dirichlet problem in spaces of functions which are hölder continuous with respect to space variables. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996) pp. 161-168. http://gdmltest.u-ga.fr/item/RLIN_1996_9_7_3_161_0/

[1] Acquistapace, P. - Terreni, B., Hölder classes with boundary conditions as interpolation spaces. Math. Zeit., 195, 1987, 451-471. | MR 900340 | Zbl 0635.35024

[2] Bolley, P. - Camus, J. - The Lai, P., Estimation de la résolvante du problème de Dirichlet dans les espaces de Hölder. C. R. Acad. Sci. Paris, 305, Serie I, 1987, 253-256. | MR 907955 | Zbl 0634.35055

[3] Guidetti, D., On elliptic problems in Besov spaces. Math. Nachr., 152, 1991, 247-275. | MR 1121237 | Zbl 0767.46027

[4] Knerr, B., Parabolic interior Schauder estimates by the maximum principle. Arch. Rat. Mech. Anal., 75, 1980, 51-58. | MR 592103 | Zbl 0468.35014

[5] Kruzhkov, S. - Castro, A. - Lopez, M., Mayoraciones de Schauder y theorema de existencia de las soluciónes del problema de Cauchy para ecuaciones parabolicas lineales y no lineales (I). Revista Ciencias Matemáticas, vol. 1, n. 1, 1980, 55-76. | MR 622442 | Zbl 0572.35046

[6] Lopez Morales, M., Primer problema de contorno para ecuaciones parabolicas lineales y no lineales. Revista Ciencias Matemáticas, vol. 13, n. 1, 1992, 3-20. | MR 1206783

[7] Lunardi, A., Analytic semigroups and optimal regularity in the parabolic problems. Progress in Nonlinear Differential Equations and Their Applications, vol. 16, Birkhäuser, 1995. | MR 1329547 | Zbl 0816.35001

[8] Lunardi, A. - Sinestrari, E. - Von Wahl, W., A semigroup approach to the time dependent parabolic initial boundary value problem. Diff. Int. Equations, 63, 1992, 88-116. | Zbl 0596.45019

[9] Sinestrari, E. - Von Wahl, W., On the solutions of the first boundary value problem for the linear parabolic problem. Proc. Royal Soc. Edinburgh, 108A, 1988, 339-355. | MR 943808 | Zbl 0664.35041

[10] Solonnikov, V. A., On the boundary value problems for linear parabolic systems of differential equations of general form. Proc. Steklov Inst. Math., 83 (1965), (ed. O. A. Ladyzenskaya); Amer. Math. Soc, 1967. | MR 211083 | Zbl 0164.12502

[11] Stewart, H. B., Generation of analytic semigroups by strongly elliptic operators under general boundary conditions. Trans. Amer. Math. Soc., 259, 1980, 299-310. | MR 561838 | Zbl 0451.35033