Suppose that is a meromorphic or entire function satisfying where is a polynomial in all its arguments. Is there a limitation on the growth of , as measured by its characteristic ? In general the answer to this question is not known. Theorems of Gol'dberg, Steinmetz and the author give a positive answer in certain cases. Some illustrative examples are also given.
Sia una funzione meromorfa o intera dell'equazione , dove è un polinomio in tutti i suoi termini. Esiste una limitazione della crescita di , considerata rispetto alla sua caratteristica ? La risposta a tale questione non è in generale nota. L'autore e i Teoremi Gol'dberg e Steinmetz danno una risposta positiva in alcuni casi. Vengono anche forniti alcuni esempi.
@article{RLIN_1996_9_7_2_67_0, author = {Walter K. Hayman}, title = {The growth of solutions of algebraic differential equations}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {7}, year = {1996}, pages = {67-73}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1996_9_7_2_67_0} }
Hayman, Walter K. The growth of solutions of algebraic differential equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996) pp. 67-73. http://gdmltest.u-ga.fr/item/RLIN_1996_9_7_2_67_0/
[1] On determining the growth of meromorphic solutions of algebraic differential equations having arbitrary entire coefficients. Nagoya Math. J., 49, 1973, 53-65. | MR 320400 | Zbl 0268.34010
,[2] Some results on Analytic and Meromorphic Solutions of Algebraic Differential Equations. Advances in Mathematics, 15, 1975, 41-61. | MR 379940 | Zbl 0296.34005
,[3] On the existence of meromorphic solutions of differential equations having arbitrarily rapid growth. J. reine angew. Math., 288, 1976, 176-182. | MR 430371 | Zbl 0337.34007
,[4] A simple example for a Theorem of Vijayaraghavan. J. London Math. Soc., 12, 1937, 250-252. | JFM 63.0419.02 | MR 95760
- - ,[5] Mémoire sur les séries divergentes. Ann. Sci. École Norm. Sup., 16, 1899, 9-136. | JFM 30.0230.03
,[6] On single valued solutions of first order differential equations. Ukrain Mat. Zh., 8, 1956, 254-261 (Russian). | MR 85396 | Zbl 0072.09202
,[7] The local growth of power series: A survey of the Wiman-Valiron method. Canad. Math. Bull., 17 (3), 1974, 317-358. | MR 385095 | Zbl 0314.30021
,[8] | MR 1207139 | Zbl 0784.30002
, Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter, Berlin-New York1993.[9] Über das Anwachsen der Lösungen homogener algebraischer Differentialgleichungen zweiter Ordnung. Manuscripta Math., 32, 1980, 303-308. | MR 595424 | Zbl 0444.34035
,[10] Über die eindeutigen Lösungen einer homogenen algebraischer Differentialgleichung zweiter Ordnung. Ann. Acad. Sci. Fenn., AI7, 1982, 177-188. | MR 686638 | Zbl 0565.34005
,[11] | MR 61658 | Zbl 0055.06702
, Fonctions Analytiques. Presses Universitaires de France, Paris1954.[12] Sur la croissance des fonctions définies par les équations différentielles. C. R. Acad. Sci., Paris, 194, 1932, 827-829. | Zbl 0004.00803
, , Neuere Untersuchungen über eindeutige analytische Funktionen. Springer, Berlin-Göttingen-Heidelberg1955.