A description of all «power-logarithmic» solutions to the homogeneous Dirichlet problem for strongly elliptic systems in a -dimensional cone is given, where is an arbitrary open cone in and .
Viene data una descrizione di tutte le soluzioni «power-logarithmic» del problema omogeneo di Dirichlet per un sistema fortemente ellittico in un cono -dimensionale , dove è un qualsiasi cono aperto in e .
@article{RLIN_1996_9_7_1_17_0, author = {Vladimir A. Kozlov and Vladimir G. Maz'ya}, title = {On \guillemotleft{}power-logarithmic\guillemotright{} solutions of the Dirichlet problem for elliptic systems in \( K\_{d} \times \mathbb{R}^{n-d} \), where \( K\_{d} \) is a d-dimensional cone}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {7}, year = {1996}, pages = {17-30}, zbl = {0871.35032}, mrnumber = {1437648}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1996_9_7_1_17_0} }
Kozlov, Vladimir A.; Maz'ya, Vladimir G. On «power-logarithmic» solutions of the Dirichlet problem for elliptic systems in \( K_{d} \times \mathbb{R}^{n-d} \), where \( K_{d} \) is a d-dimensional cone. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 7 (1996) pp. 17-30. http://gdmltest.u-ga.fr/item/RLIN_1996_9_7_1_17_0/
[1] Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Ob., 16, 1967, 209-292; English transl. in: Trans. Moscow Math. Soc., 16, 1967, 227-313. | MR 226187 | Zbl 0194.13405
,[2] The coefficients in the asymptotic expansion of the solutions of elliptic boundary value problems in a cone. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 52, 1975, 110-127; English transl. in: J. Soviet Math., 9, 1978, no. 5. | MR 407445
- ,[3] On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. Math. Nachr., 76, 1977, 29-66; English transl. in: Amer. Math. Soc. Transl. (2), vol 123, 1984, 57-88. | MR 601608 | Zbl 0554.35036
- ,