A notion of positivity, called Seshadri ampleness, is introduced for a smooth curve in a polarized smooth projective -fold , whose motivation stems from some recent results concerning the gonality of space curves and the behaviour of stable bundles on under restriction to . This condition is stronger than the normality of the normal bundle and more general than being defined by a regular section of an ample rank- vector bundle. We then explore some of the properties of Seshadri-ample curves.
cia. Si introduce una nozione di positività, denominata Seshadri ampiezza, per una curva non-singolare in una varietà proiettiva liscia -dimensionale polarizzata , motivata da alcuni recenti risultati concernenti la gonalità di una curva nello spazio e il comportamento di fibrati vettoriali stabili su sotto restrizione a una curva data. Questa condizione è più forte della normalità del fibrato vettoriale, e più generale dell'essere definita da una sezione regolare di un fibrato ampio di rango due. Si esplorano quindi alcune proprietà delle curve Seshadri-ampie.
@article{RLIN_1995_9_6_4_259_0, author = {Roberto Paoletti}, title = {Seshadri positive curves in a smooth projective \( 3 \)-fold}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {6}, year = {1995}, pages = {259-274}, zbl = {0874.14018}, mrnumber = {1382710}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1995_9_6_4_259_0} }
Paoletti, Roberto. Seshadri positive curves in a smooth projective \( 3 \)-fold. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995) pp. 259-274. http://gdmltest.u-ga.fr/item/RLIN_1995_9_6_4_259_0/
[1] I, Springer-Verlag, 1985. | MR 770932 | Zbl 1235.14002
- - - , The Geometry of Algebraic Curves. Vol.[2] Unstable vector bundles and curves on surfaces. Proc. Int. Congr. Mathem., Helsinki1978, 517-524. | MR 562649 | Zbl 0485.14004
,[3] On the normal bundle of smooth rational space curves. Math. Ann., 256, 1981, 453-463. | MR 628227 | Zbl 0443.14015
- ,[4] On the hyperplane principle of Lefshetz. J. Math. Soc. Japan, 32, 1980, 153-165. | MR 554521 | Zbl 0414.14007
,[5] | MR 732620 | Zbl 0885.14002
, Intersection Theory. Springer-Verlag, 1984.[6] Positivity and excess intersection. in : Enumerative and Classical Algebraic Geometry. Prog, in Math., 24, (Nice 1981) Birkhäuser, 1982, 97-105. | MR 685765 | Zbl 0501.14003
- ,[7] On the connectedness of degeneracy loci and special divisors. Acta Math., 146, 1981, 271-283. | MR 611386 | Zbl 0469.14018
- ,[8] Positive polynomials for ample vector bundles. Ann of Math., 118, 1983, 35-60. | MR 707160 | Zbl 0537.14009
- ,[9] 156, Springer-Verlag, 1970. | MR 282977 | Zbl 0208.48901
, Ample Subvarieties of Algebraic Varieties. LNM,[10] Introduction to the minimal model problem. In: (ed.), Algebraic Geometry. Sendai 1985, Adv. St. in Pure Math., vol. 10, North-Holland, 1987, 283-360. | MR 946243 | Zbl 0672.14006
- - ,[11] Some applications of the theory of ample vector bundles. In: - (eds.), Complete Intersections. Arcireale 1983, LNM 1092, Springer-Verlag, 1984, 29-61. | MR 775876 | Zbl 0547.14009
,[12] A sampling of vector bundle techniques in the study of linear series. In: et al. (eds.), Proceedings of the Intern. Centre Theor. Phys. College on Riemann Surfaces (Trieste 1987). World Scientific Press, 1989, 500-559. | MR 1082360 | Zbl 0800.14003
,[13] Noether-Lefshetz theory and the Picard group of projective surface. PhD Thesis, Brown University, 1988. | Zbl 0736.14012
,[14] Free pencils on divisors. Mathematische Annalen, to appear. | MR 1348358 | Zbl 0835.14005
,[15] Seshadri constants, gonality of space curves and restriction of stable bundles. J. Diff. Geom., 40, 1972, 475-504. | MR 1305979 | Zbl 0811.14034
,[16] On the canonical ring of a curve. In: Algebraic Geometry and Commutative Algebra, in Honor of Masayoshi Nagata. Kinokuniya, Tokio 1988, vol. II, 503-516. | MR 977775 | Zbl 0699.14041
- ,[17] Extension of morphisms defined on a divisor. Math. Ann., 277, 1987, 395-413. | MR 891582 | Zbl 0595.14005
,[18] 56, Birkhäuser, Boston 1985. | MR 782484 | Zbl 0578.32055
- , Vanishing theorems on complex manifolds. Progr. Math., vol.[19] On manifolds that cannot be ample divisors. Math. Ann., 221, 1987, 55-72. | MR 404703 | Zbl 0306.14006
,[20] Cohomological dimension of abelian varieties. Thesis, Cornell University, 1970. | MR 2619546 | Zbl 0271.14009
,