Seshadri positive curves in a smooth projective 3-fold
Paoletti, Roberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995), p. 259-274 / Harvested from Biblioteca Digitale Italiana di Matematica

A notion of positivity, called Seshadri ampleness, is introduced for a smooth curve C in a polarized smooth projective 3-fold X,A, whose motivation stems from some recent results concerning the gonality of space curves and the behaviour of stable bundles on P3 under restriction to C. This condition is stronger than the normality of the normal bundle and more general than C being defined by a regular section of an ample rank-2 vector bundle. We then explore some of the properties of Seshadri-ample curves.

cia. Si introduce una nozione di positività, denominata Seshadri ampiezza, per una curva non-singolare C in una varietà proiettiva liscia 3-dimensionale polarizzata X,A, motivata da alcuni recenti risultati concernenti la gonalità di una curva nello spazio e il comportamento di fibrati vettoriali stabili su P3 sotto restrizione a una curva data. Questa condizione è più forte della normalità del fibrato vettoriale, e più generale dell'essere C definita da una sezione regolare di un fibrato ampio di rango due. Si esplorano quindi alcune proprietà delle curve Seshadri-ampie.

Publié le : 1995-12-01
@article{RLIN_1995_9_6_4_259_0,
     author = {Roberto Paoletti},
     title = {Seshadri positive curves in a smooth projective \( 3 \)-fold},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {6},
     year = {1995},
     pages = {259-274},
     zbl = {0874.14018},
     mrnumber = {1382710},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1995_9_6_4_259_0}
}
Paoletti, Roberto. Seshadri positive curves in a smooth projective \( 3 \)-fold. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995) pp. 259-274. http://gdmltest.u-ga.fr/item/RLIN_1995_9_6_4_259_0/

[1] Arbarello, E. - Cornalba, M. - Griffiths, P. - Harris, J., The Geometry of Algebraic Curves. Vol. I, Springer-Verlag, 1985. | MR 770932 | Zbl 1235.14002

[2] Bogomolov, F., Unstable vector bundles and curves on surfaces. Proc. Int. Congr. Mathem., Helsinki1978, 517-524. | MR 562649 | Zbl 0485.14004

[3] Eisenbud, D. - Van De Ven, A., On the normal bundle of smooth rational space curves. Math. Ann., 256, 1981, 453-463. | MR 628227 | Zbl 0443.14015

[4] Fujita, T., On the hyperplane principle of Lefshetz. J. Math. Soc. Japan, 32, 1980, 153-165. | MR 554521 | Zbl 0414.14007

[5] Fulton, W., Intersection Theory. Springer-Verlag, 1984. | MR 732620 | Zbl 0885.14002

[6] Fulton, W. - Lazarsfeld, R., Positivity and excess intersection. in : Enumerative and Classical Algebraic Geometry. Prog, in Math., 24, (Nice 1981) Birkhäuser, 1982, 97-105. | MR 685765 | Zbl 0501.14003

[7] Fulton, W. - Lazarsfeld, R., On the connectedness of degeneracy loci and special divisors. Acta Math., 146, 1981, 271-283. | MR 611386 | Zbl 0469.14018

[8] Fulton, W. - Lazarsfeld, R., Positive polynomials for ample vector bundles. Ann of Math., 118, 1983, 35-60. | MR 707160 | Zbl 0537.14009

[9] Hartshorne, R., Ample Subvarieties of Algebraic Varieties. LNM, 156, Springer-Verlag, 1970. | MR 282977 | Zbl 0208.48901

[10] Kawamata, Y. - Matsuda, K. - Matsuhe, K., Introduction to the minimal model problem. In: T. Oda (ed.), Algebraic Geometry. Sendai 1985, Adv. St. in Pure Math., vol. 10, North-Holland, 1987, 283-360. | MR 946243 | Zbl 0672.14006

[11] Lazarsfeld, R., Some applications of the theory of ample vector bundles. In: S. Greco - R. Strano (eds.), Complete Intersections. Arcireale 1983, LNM 1092, Springer-Verlag, 1984, 29-61. | MR 775876 | Zbl 0547.14009

[12] Lazarsfeld, R., A sampling of vector bundle techniques in the study of linear series. In: M. Cornalba et al. (eds.), Proceedings of the Intern. Centre Theor. Phys. College on Riemann Surfaces (Trieste 1987). World Scientific Press, 1989, 500-559. | MR 1082360 | Zbl 0800.14003

[13] Lopez, A., Noether-Lefshetz theory and the Picard group of projective surface. PhD Thesis, Brown University, 1988. | Zbl 0736.14012

[14] Paoletti, R., Free pencils on divisors. Mathematische Annalen, to appear. | MR 1348358 | Zbl 0835.14005

[15] Paoletti, R., Seshadri constants, gonality of space curves and restriction of stable bundles. J. Diff. Geom., 40, 1972, 475-504. | MR 1305979 | Zbl 0811.14034

[16] Paranjape, K. - Ramanan, S., On the canonical ring of a curve. In: Algebraic Geometry and Commutative Algebra, in Honor of Masayoshi Nagata. Kinokuniya, Tokio 1988, vol. II, 503-516. | MR 977775 | Zbl 0699.14041

[17] Serrano, F., Extension of morphisms defined on a divisor. Math. Ann., 277, 1987, 395-413. | MR 891582 | Zbl 0595.14005

[18] Shiffman, B. - Sommese, A. J., Vanishing theorems on complex manifolds. Progr. Math., vol. 56, Birkhäuser, Boston 1985. | MR 782484 | Zbl 0578.32055

[19] Sommese, A. J., On manifolds that cannot be ample divisors. Math. Ann., 221, 1987, 55-72. | MR 404703 | Zbl 0306.14006

[20] Speiser, R. D., Cohomological dimension of abelian varieties. Thesis, Cornell University, 1970. | MR 2619546 | Zbl 0271.14009