Results concerning the rigidity of holomorphic maps and the distortion of biholomorphic maps in infinite dimensional Siegel domains of -algebras are established. The homogeneity of the open unit balls in these algebras plays a key role in the arguments.
Si stabiliscono alcuni risultati sulla rigidità di applicazioni olomorfe e sulla distorsione di biolomorfismi di domini di Siegel di algebre . L'omogeneità dei dischi unità in queste algebre ha un ruolo essenziale nelle dimostrazioni.
@article{RLIN_1995_9_6_3_185_0, author = {Kazimierz W\l odarczyk}, title = {Rigidity of holomorphic maps and distortion of biholomorphic maps in operator Siegel domains}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {6}, year = {1995}, pages = {185-197}, zbl = {0840.46028}, mrnumber = {1363786}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1995_9_6_3_185_0} }
Włodarczyk, Kazimierz. Rigidity of holomorphic maps and distortion of biholomorphic maps in operator Siegel domains. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995) pp. 185-197. http://gdmltest.u-ga.fr/item/RLIN_1995_9_6_3_185_0/
[1] The growth and -theorems for starlike functions in . Pacific J. Math., 150, 1991, 13-22. | MR 1120709 | Zbl 0737.32005
- - ,[2] A distortion theorem for biholomorphic mappings in . Trans. Amer. Math. Soc., 344, 1994, 907-924. | MR 1250815 | Zbl 0814.32004
- - ,[3] Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. J. Amer. Math. Soc., 7, 1994, 661-676. | MR 1242454 | Zbl 0807.32008
- ,[4] Sur la possibilité d'étendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes. Note added to , Leçons sur les fonctions Univalentes ou Multivalentes, Gauthier-Villars, Paris1933, 129-155. | JFM 59.0344.01
,[5] Sur les domaines bornés homogènes de l'espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. | Zbl 0011.12302
,[6] Bounded holomorphic functions on bounded symmetric domains. Trans. Amer. Math. Soc., 343, 1994, 135-156. | MR 1176085 | Zbl 0804.32018
- ,[7] | MR 1033739 | Zbl 0708.46046
, The Schwarz Lemma. Oxford Mathematical Monographs, Clarendon Press, Oxford1989.[8] Distortion in several variables. Complex Variables Theory Appl., 5, 1986, 323-326. | MR 846500 | Zbl 0559.32004
- ,[9] Some bounds on convex mappings in several complex variables. Pacific J. Math., 165, 1994, 295-320. | MR 1300835 | Zbl 0812.32003
- ,[10] 40, Amsterdam-New York-Oxford 1980. | MR 563329 | Zbl 0447.46040
- , Holomorphic Maps and Invariant Distances. North-Holland Mathematics Studies,[11] Biholomorphic convex mappings of ball in . Pacific J. Math., 161, 1993, 287-306. | MR 1242200 | Zbl 0788.32017
- - ,[12] The growth theorem for biholomorphic mappings in several complex variables. Chinese Ann. Math., Ser. B 14, 1993, 93-104. | MR 1220063 | Zbl 0781.32005
- - ,[13] Distortion theorems for holomorphic maps between convex domains in . Complex Variables Theory Appl., 15, 1990, 37-42. | MR 1055937 | Zbl 0681.32002
,[14] Schwarz's lemma in normed linear spaces. Proc. Nat. Acad. Sci. U.S.A., 62, 1969, 1014-1017. | MR 275179 | Zbl 0199.19401
,[15] A continuous form of Schwarz's lemma in normed linear spaces. Pacific J. Math., 38, 1971, 635-639. | MR 305037 | Zbl 0199.18302
,[16] 364, Springer-Verlag, Berlin-Heidelberg-New York1974, 13-40. | MR 407330 | Zbl 0293.46049
, Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces. Lecture Notes in Mathematics,[17] On the size of balls covered by analytic transformations. Monatsh. Math., 83, 1977, 9-23. | MR 435454 | Zbl 0356.46046
,[18] Operator Siegel domains. Proc. Roy. Soc. Edinburgh, 79 A, 1977, 137-156. | MR 484600 | Zbl 0376.32027
,[19] Linear fractional transformations of circular domains in operator spaces. Indiana Univ. Math. J., 41, 1992, 125-147. | MR 1160906 | Zbl 0760.47018
,[20] 364, Springer-Verlag, Berlin-Heidelberg-New York1974, 41-57. | MR 393587 | Zbl 0272.58003
, Lindelöfs Principle in Infinite Dimensions. Lecture Notes in Mathematics,[21] 12, Amsterdam-New York-Oxford1977, 217-229. | MR 492403 | Zbl 0373.46050
, Some Properties of the Images of Analytic Maps. North-HollandMathematics Studies[22] 10, Berlin-New York1989. | MR 986066 | Zbl 0666.58008
, Analyticity in Infinite Dimensional Spaces. de GruyterStudies in Mathematics,[23] Some results on rigidity of holomorphic mappings. Kodai Math. J., 17, 1994, 246-255. | MR 1282213 | Zbl 0817.32012
,[24] | MR 252690 | Zbl 0196.09901
, Automorphic Functions and the Geometry of Classical Domains. Gordon-Breach, New York1969.[25] | MR 507768 | Zbl 0298.30014
, Univalent Functions. Vandenhoeck and Ruprecht, Göttingen1975.[26] | MR 365062 | Zbl 0867.46001
, Functional Analysis. McGraw-Hill, New York1973.[27] | MR 601594 | Zbl 1139.32001
, Function Theory in the Unit Ball of . Springer-Verlag, New York-Heidelberg-Berlin1980.[28] 599, Springer-Verlag, New York1976, 146-159. | MR 450601 | Zbl 0356.32004
, Starlikeness, Convexity and other Geometric Properties of Holomorphic Maps in Higher Dimensions. Lecture Notes in Mathematics,[29] Rigidity of holomorphic isometries. Rend. Mat. Acc. Lincei, s. 9, vol. 5, 1994, 55-62. | MR 1273893 | Zbl 0802.46059
,[30] On holomorphic maps in Banach spaces and -algebras. Quart. J. Math. Oxford, (2), 36, 1985, 495-511. | MR 816489 | Zbl 0595.46048
,[31] Hyperbolic geometry in bounded symmetric homogeneous domains of -algebras. Atti Sem. Mat. Fis. Univ. Modena, 39, 1991, 201-211. | MR 1111769 | Zbl 0744.46035
,[32] Fixed points and invariant domains of expansive holomorphic maps in complex Banach spaces. Adv. in Math., 110, 1995, 247-254. | MR 1317617 | Zbl 0868.47036
,[33] The Pick version of the Schwarz lemma and comparison of the Poincaré densities. Ann. Acad. Sci. Fenn., 19, 1994, 291-322. | MR 1274084 | Zbl 0823.30014
,