In this Note, by using a generalization of the classical Fermat principle, we prove the existence and multiplicity of lightlike geodesics joining a point with a timelike curve on a class of Lorentzian manifolds, satisfying a suitable compactness assumption, which is weaker than the globally hyperbolicity.
In questa Nota, usando una generalizzazione del principio di Fermat, si studia l'esistenza e la molteplicità di geodetiche di tipo luce congiungenti un punto con una curva di tipo tempo su una classe di varietà Lorentziane, soddisfacente una condizione di compattezza più debole della globale iperbolicità.
@article{RLIN_1995_9_6_3_155_0, author = {Fabio Giannoni and Antonio Masiello}, title = {On a variational theory of light rays on Lorentzian manifolds}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {6}, year = {1995}, pages = {155-159}, zbl = {0848.53041}, mrnumber = {1363784}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1995_9_6_3_155_0} }
Giannoni, Fabio; Masiello, Antonio. On a variational theory of light rays on Lorentzian manifolds. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995) pp. 155-159. http://gdmltest.u-ga.fr/item/RLIN_1995_9_6_3_155_0/
[1] | MR 619853 | Zbl 0846.53001
- , Global Lorentzian Geometry. Marcel Dekker Inc., New York-Basel 1981.[2] A Morse index for geodesics in static Lorentz manifolds. Math. Ann., 293, 1992, 433-442. | MR 1170518 | Zbl 0735.58011
- ,[3] On the number of conjugate points along a geodesic of a Lorentzian manifold. Preprint.
- - ,[4] Lectures on Morse Theory old and new. Bull. Am. Math. Soc., 7, 1982, 331-358. | MR 663786 | Zbl 0505.58001
,[5] Category of loop spaces of open subsets in Euclidean space. Nonlinear Analysis T.M.A., 17, 1991, 1153-1161. | MR 1137900 | Zbl 0756.55008
- ,[6] A Fermat principle for stationary space-times, with applications to light rays. J. Geom. Phys., 15, 1995, 159-188. | MR 1310949 | Zbl 0819.53037
- - ,[7] Domains of dependence. J. Math. Phys., 11, 1970, 437-449. | MR 270697 | Zbl 0189.27602
,[8] Morse Relations for geodesics on stationary Lorentzian manifolds with boundary. Topological Methods in Nonlinear Analysis, in press. | Zbl 0852.58016
- ,[9] Conjugate points on spacelike geodesics or Pseudo-Self-Adjoint Morse-Sturm-Liouville operators. Preprint. | Zbl 0799.58018
,[10] Variational Methods in Lorentzian Geometry. Pitman Research Notes in Mathematics, vol. 309, London1994. | MR 1294140 | Zbl 0816.58001
,[11] 51, Princeton University Press, Princeton1963. | MR 163331 | Zbl 0108.10401
, Morse Theory. Annals Math. Stud., vol.[12] 18, 1934. | Zbl 0011.02802
, The Calculus of Variations in the Large. Coll. Lect.Am. Math. Soc., vol.[13] | Zbl 0531.53051
, Semi-Riemannian Geometry with Applications to Relativity. Acad. Press Inc., New-York-London1983.[14] 7, S.I.A.M., Philadelphia1972. | MR 469146 | Zbl 0321.53001
, Techniques of Differential Topology in Relativity. Conf. Board Math. Sci., vol.[15] On Fermat's principle in general relativity: I. The general case. Class. Quantum Grav., 7, 1990, 1319-1331. | MR 1064182 | Zbl 0707.53054
,[16] A Morse Theory for geodesics on a Lorentz manifold. Topology, 14, 1975, 69-90. | MR 383461 | Zbl 0323.58010
,