Questa Nota è dedicata a mettere in evidenza alcune proprietà degli spazi delle funzioni a variazione limitata e degli spazi di Nikolskii ed , ( ), che non mi risulta siano già state esposte nella forma generale qui enunciata, quali la non separabilità, l'essere il duale di uno spazio di Banach separabile, la convergenza e la compattezza debole in e le loro applicazioni al classico problema di Stefan bifase.
The aim of this Note is to show some properties of BV and Nikolskii spaces that to my knowledge are not present in the literature in their general form here presented; by this I mean the lack of separability, their being the dual of a separable-space, the convergence and the weak-star compactness in and finally their applications to the well-known two-phase Stefan problem.
@article{RLIN_1995_9_6_3_143_0, author = {Alberto Farina}, title = {Spazi BV e di Nikolskii e applicazioni al problema di Stefan}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {6}, year = {1995}, pages = {143-154}, zbl = {0838.46027}, mrnumber = {1363783}, language = {it}, url = {http://dml.mathdoc.fr/item/RLIN_1995_9_6_3_143_0} }
Farina, Alberto. Spazi BV e di Nikolskii e applicazioni al problema di Stefan. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995) pp. 143-154. http://gdmltest.u-ga.fr/item/RLIN_1995_9_6_3_143_0/
[1] | Zbl 0344.46071
- , Interpolation Spaces. Springer-Verlag, Berlin-New York 1976.[2] Alcune osservazioni sugli spazi di Nikolskii. Rend. Ist. Lomb. Sc., A, 126, 1992, 93-104. | MR 1267875 | Zbl 0809.46026
- ,[3] Nikolskii spaces and the BV space characterized by motions in . 1994, to appear.
- ,[4] Integral Rappresentation of Functions and Imbedding Theorems. Vol. II. V.H. Winston & Sons, 1979.
- - ,[5] Function spaces of Nikolskii type on compact manifolds. Rend. Mat. Acc. Lincei, s. 9, v. 3, 1992, 185-194. | MR 1186914 | Zbl 0772.46015
,[6] A regularity result of Nikolskii type for an evolution equation on compact homogeneous spaces. Mathematische Nachrichten, 166, 1994, 273-285. | MR 1273338 | Zbl 0837.35035
,[7] | MR 697382 | Zbl 0511.46001
, Analyse fonctionelle. Masson, Paris1983.[8] Remark on the dual of some Lipschitz spaces. Hiroshima Math. J., 10, 1980, 163-173. | MR 558852 | Zbl 0434.31001
,[9] | MR 230022 | Zbl 0164.43702
- , Semi-Groups of Operators and Approximation. Springer-Verlag, Berlin-New York 1967.[10] On the Stefan problem. The variational approach and some applications. Math. Models and Methods in Mechanics, Banach center publ., vol. 15, Warsaw1985, 253-275. | MR 874846 | Zbl 0668.35088
,[11] | MR 453964 | Zbl 0369.46039
- , Vector Measures. Am. Math. Soc., Providence 1977.[12] | MR 775682 | Zbl 0545.49018
, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser Inc., Boston 1984.[13] Nonincrease of a mushy region in a nonhomogeneous Stefan problem. Quarterly of applied Math., vol. XLIX, 4, 741-746. | Zbl 0756.35119
- ,[14] Regularity of the enthalpy for two-phase Stefan problem in several space variables. Preprint 1992.
,[15] | MR 276438 | Zbl 0179.46303
- , Topics in the Theory of Lifting. Springer-Verlag, Berlin-New York 1969.[16] Linear and Quasilinear Equations of Parabolic Type. Trans. Math. Monographs, 23, 1968. | MR 241822 | Zbl 0174.15403
- - ,[17] I. Springer-Verlag, Berlin-New York 1972. | MR 350177 | Zbl 0223.35039
- , Non-Homogeneous Boundary Value Problems and Applications. Vol.[18] Sur une classe d'espace d'interpolation. Inst. Hautes Etudes Sci. Publ. Math., 19, 1964, 5-68. | MR 165343 | Zbl 0148.11403
- ,[19] Spazi di interpolazione ed equazioni alle derivate parziali. Atti del VII Congresso dell'Unione Matematica Italiana, Genova1963, 134-197. | MR 215082 | Zbl 0178.16501
,[20] Some theoretical and numerical results on the two-phase Stefan problem. SIAM J. Numer. Anal., 26, 1989, 1425-1438. | MR 1025097 | Zbl 0738.65092
- - ,[21] | MR 1085487 | Zbl 0694.41037
, Ondelettes. Ondelettes et opérateurs I. Hermann, Paris1990.[22] On the theory of Lipschitz spaces of distributions on Euclidean n-spaces I. Principal Properties. J. Math. Mech., 13, 1964, 407-479. | MR 163159 | Zbl 0132.09402
,[23] Function of bounded deformation. Archive Rat. Mech. and Analysis, 75, 1980, 7-21. | MR 592100 | Zbl 0472.73031
- ,[24] | MR 503903 | Zbl 0387.46032
, Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam-New York 1978.[25] BV regularity of the entalpy for semidiscrete two-phase Stefan problems. Rend. Ist. Lomb. Sc, A, 126, 1992, 29-42. | MR 1267870 | Zbl 0801.35158
,[26] Sur le problème de Stefan avec flux non linéaire. Boll. Un. Mat. Ital., C(6), 18, 1981, 63-86. | MR 631569 | Zbl 0471.35078
,