The class of elastic-plastic material models considered allows for nonassociativity, nonlinear hardening and saturation in the sense that the static internal variables are constrained by a bounding surface described through convex bounding functions. With reference to finite element, generalized variables discretization in space, two dynamic shakedown criteria are established by a kinematic approach in Koiter's sense, based on weak constitutive restrictions and centered on two suitable definitions of admissible yield cycles.
La classe di materiali elastoplastici considerata tiene conto di nonassociatività, incrudimento nonlineare e saturazione (nel senso che le variabili interne statiche sono soggette a vincoli convessi che definiscono una superficie di delimitazione). Con riferimento ad una discretizzazione spaziale per elementi finiti in variabili generalizzate, si dimostrano due teoremi di adattamento («shakedown») dinamico in base ad un approccio cinematico nel senso di Koiter, fondato su ipotesi costitutive alquanto generali e su opportune definizioni di cicli plastici ammissibili.
@article{RLIN_1995_9_6_1_55_0, author = {Alberto Corigliano and Giulio Maier and Slawomir Pycko}, title = {Kinematic criteria of dynamic shakedown extended to nonassociative constitutive laws with saturation nonlinear hardening}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {6}, year = {1995}, pages = {55-64}, zbl = {0833.73014}, mrnumber = {1340282}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1995_9_6_1_55_0} }
Corigliano, Alberto; Maier, Giulio; Pycko, Slawomir. Kinematic criteria of dynamic shakedown extended to nonassociative constitutive laws with saturation nonlinear hardening. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995) pp. 55-64. http://gdmltest.u-ga.fr/item/RLIN_1995_9_6_1_55_0/
[1]
, Shakedown of Elastic-Plastic Structures. Elsevier, Amsterdam1987.[2] Shakedown of foundations subjected to cyclic loads. In: - (eds.), Soil Mechanics-Transient and Cyclic Loads. John Wiley, Chichester 1982, 469-489.
,[3] | Zbl 0743.73002
- , Mechanics of Solids Materials. Cambridge University Press, Cambridge 1990.[4] A generalization to nonlinear hardening of the first shakedown theorem for discrete elastic-plastic structural models. Atti Acc. Lincei Rend. fis., s. 8, v. 81, 1987, 161-174. | MR 999429 | Zbl 0667.73024
,[5] Dynamic shakedown and bounding theory for a class of nonlinear hardening discrete structural models. Int. J. Plasticity, 6, 1990, 551-572. | Zbl 0731.73022
- ,[6] Shakedown problems for material models with internal variables. Eur. J. Mech., A. Solids, 6, 1991, 621-639. | MR 1139600 | Zbl 0745.73010
- - - ,[7] Dynamic shakedown in elastoplastic structures with general internal variable constitutive laws. Int. J. Plasticity, 7, 1991, 679-692. | Zbl 0755.73042
- ,[8] La notion de sanctuaire d'élasticité et d'adaptation des structures. C.R. Acad. Sci. Paris, 316, Serie II, 1993, 1493-1498. | Zbl 0773.73036
- ,[9] Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative internal variable constitutive laws. Submitted for publication in Int. J. of Solids and Structures. | Zbl 0879.73019
- - ,[10] Shakedown theorems for some classes of nonassociated hardening elastic-plastic material models. Submitted for publication in Int. J. Plasticity. | Zbl 0853.73021
- ,[11] Sull'adattamento dei corpi elastoplastici soggetti ad azioni dinamiche. Giornale del Genio Civile, 415, 1969, 239-258.
,[12] A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. Meccanica, 5, 1970, 54-66. | Zbl 0197.23303
,[13] General Theorems of Elastic-Plastic Solids. In: - (eds.), Progress in Solid Mechanics. 1, North Holland, Amsterdam 1960, 167-221. | MR 112405 | Zbl 0098.37603
,[14] Inadaptation theorems in the dynamics of elastic-work hardening structures. Ing. Arch., 43, 1973, 44-57. | MR 413698 | Zbl 0271.73030
- ,[15] Dynamic non-shakedown theorem for elastic perfectly plastic continua. J. Mech. Phys. Solids, 22, 1974, 401-413. | Zbl 0304.73039
- ,[16] On compatible finite element models for elastic plastic analysis. Meccanica, 13, 1978, 133-150. | Zbl 0417.73073
,[17] Generalized variables and extremum theorems in discretized elasticplastic analysis. Comp. Meth. Appl. Mech. Eng., 96, 1992, 213-237. | MR 1162380 | Zbl 0761.73107
- - ,[18] Nonassociative and coupled flow rules of elastoplasticity for rock-like materials. Int. J. Rock Mec. Mining Sci., 16, 1979, 77-92.
- ,[19] Conventional and unconventional plastic response and representation. Appl. Mech. Rev., 41, 4, 1988, 151-167.
,[20] Shakedown theory in perfect elastoplasticity with associated and nonassociated flow laws: a finite element, linear programming approach. Meccanica, 4, 1969, 250-260. | Zbl 0219.73039
,[21] Shakedown with nonlinear strain hardening including structural computation using finite element method. Int. J. Plasticity, 8, 1992, 1-31. | Zbl 0766.73026
- - ,[22] On elastic recovering of elastic-plastic forced vibration. 1969, Giornale del Genio Civile, 4-5, 251-261 (in Italian).
,