In questa Nota presentiamo alcuni teoremi di confronto tra il movimento secondo la curvatura media ottenuto con il metodo delle minime barriere di De Giorgi e i movimenti definiti con i metodi di Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.
In this Note we state some comparison theorems between De Giorgi's definition of motion by mean curvature using the barriers method and the evolutions defined with the methods of Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.
@article{RLIN_1995_9_6_1_45_0, author = {Giovanni Bellettini and Maurizio Paolini}, title = {Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {6}, year = {1995}, pages = {45-54}, zbl = {0834.35062}, mrnumber = {1340281}, language = {it}, url = {http://dml.mathdoc.fr/item/RLIN_1995_9_6_1_45_0} }
Bellettini, Giovanni; Paolini, Maurizio. Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995) pp. 45-54. http://gdmltest.u-ga.fr/item/RLIN_1995_9_6_1_45_0/
[1] Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. | MR 1205983 | Zbl 0783.35002
- - ,[2] A level set approach to the evolution of surfaces of any codimension. Preprint Scuola Normale Superiore di Pisa, Ottobre 1994.
- ,[3] Front propagation and phase field theory. SIAM J. Control Optim., 31, 1993, 439-469. | MR 1205984 | Zbl 0785.35049
- - ,[4] Two examples of fattening for the curvature flow with a driving force. Rend. Mat. Acc. Lincei, s. 9, v. 5, 1994, 229-236. | MR 1298266 | Zbl 0826.35051
- ,[5] Some comparison results between different notions of motion by mean curvature. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica, in corso di stampa.
- ,[6] | MR 485012 | Zbl 0386.53047
, The Motion of a Surface by its Mean Curvature. Princeton University Press, Princeton1978.[7] Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations, 90, 1991, 211-237. | MR 1101239 | Zbl 0735.35072
- ,[8] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differential Geom., 33, 1991, 749-786. | MR 1100211 | Zbl 0696.35087
- - ,[9] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27, 1992, 1-67. | MR 1118699 | Zbl 0755.35015
- - ,[10] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 227, 1983, 1-42. | MR 690039 | Zbl 0599.35024
- ,[11] Some conjectures on flow by mean curvature. In: - - (eds.), Methods of Real Analysis and Partial Differential Equations. Liguori, Napoli 1990. | Zbl 0840.35042
,[12] Congetture sui limiti delle soluzioni di alcune equazioni paraboliche quasi lineari. In: Nonlinear Analysis. A Tribute in Honour of G. Prodi. S.N.S. Quaderni, Pisa1991, 173-187. | Zbl 0840.35012
,[13] New problems on minimizing movements. In: - (eds.), Boundary Value Problems for Partial Differential Equations and Applications. 29 Masson, Paris 1993. | MR 1260440 | Zbl 0851.35052
,[14] Barriere, frontiere, e movimenti di varietà. Conferenza tenuta al Dipartimento di Matematica dell'Università di Pavia, 18 marzo 1994.
,[15] Geometrical evolution of developped interfaces. Trans. Amer. Math. Soc., in corso di stampa. | Zbl 0797.35077
- ,[16] Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45, 1992, 1097-1123. | MR 1177477 | Zbl 0801.35045
- - ,[17] Motion of level sets by mean curvature. I. J. Differential Geom., 33, 1991, 635-681. | MR 1100206 | Zbl 0726.53029
- ,[18] Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc., 330, 1992, 321-332. | MR 1068927 | Zbl 0776.53005
- ,[19] Motion of level sets by mean curvature. III. J. Geom. An., 2, 1992, 121-150. | MR 1151756 | Zbl 0768.53003
- ,[20] Curve shortening makes curves circular. Invent. Math., 76, 1984, 357-364. | MR 742856 | Zbl 0542.53004
,[21] The heat equations shrinking convex plane curves. J. Differential Geom., 23, 1986, 69-96. | MR 840401 | Zbl 0621.53001
- ,[22] Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan, 44, 1992, 99-111. | MR 1139660 | Zbl 0739.53005
- ,[23] Global existence of weak solutions for interface equations coupled with diffusion equations. SIAM J. Math. Anal., 23, 1992, 821-835. | MR 1166559 | Zbl 0754.35061
- - ,[24] Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 1991, 443-470. | MR 1119185 | Zbl 0836.35009
- - - ,[25] The heat equation shrinks embedded plane curves to round points. J. Differential Geom., 26, 1987, 285-314. | MR 906392 | Zbl 0667.53001
,[26] Shortening embedded curves. Ann. of Math., 129, 1989, 71-111. | MR 979601 | Zbl 0686.53036
,[27] Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20, 1984, 237-266. | MR 772132 | Zbl 0556.53001
,[28] The level-set flow on a manifold. In: Proceedings of Symposia in Pure Mathematics. Amer. Math. Soc., 54, Part I, 1993, 193-204. | MR 1216585 | Zbl 0827.53014
,[29] Generalized flow of sets by mean curvature on a manifold. Indiana Univ. Math. J., 41, 3, 1992, 671-705. | MR 1189906 | Zbl 0759.53035
,[30] Convergence of the Allen-Cahn equation to Brakkes motion by mean curvature. J. Differential Geom., 38, 1993, 417-461. | MR 1237490 | Zbl 0784.53035
,[31] Elliptic Regularization and Partial Regularity for Motion by Mean Curvature. Memoirs of the Amer. Math. Soc., 250, 1994, 1-90. | MR 1196160 | Zbl 0798.35066
,[32] On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's. Comm. Pure Appl. Math., 42, 1989, 15-45. | MR 973743 | Zbl 0645.35025
,[33] The maximum principle for viscosity solutions of second-order fully nonlinear partial differential equations. Arch. Rational Mech. Anal., 101, 1988, 1-27. | MR 920674 | Zbl 0708.35019
,[34] Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, I. Comm. Partial Differential Equations, 8, 1983, 1101-1134. | MR 709164 | Zbl 0716.49022
,[35] Un esempio di -convergenza. Boll. Un. Mat. Ital., B (5), 14, 1977, 285-299. | MR 445362 | Zbl 0356.49008
- ,[36] Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79, 1988, 12-49. | MR 965860 | Zbl 0659.65132
- ,[37] Motion of a set by the curvature of its boundary. J. Differential Equations, 101, 1993, 313-372. | MR 1204331 | Zbl 0769.35070
,[38] Ginzburg-Landau equation and motion by mean curvature, I: convergence. Research report n. 93-NA-026, August 1993, Carnegie Mellon University. | Zbl 0935.35060
,[39] Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Comm. Partial Differential Equations, 18, 1993, 859-894. | MR 1218522 | Zbl 0804.53006
- ,