Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media
Bellettini, Giovanni ; Paolini, Maurizio
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995), p. 45-54 / Harvested from Biblioteca Digitale Italiana di Matematica

In questa Nota presentiamo alcuni teoremi di confronto tra il movimento secondo la curvatura media ottenuto con il metodo delle minime barriere di De Giorgi e i movimenti definiti con i metodi di Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.

In this Note we state some comparison theorems between De Giorgi's definition of motion by mean curvature using the barriers method and the evolutions defined with the methods of Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.

Publié le : 1995-03-01
@article{RLIN_1995_9_6_1_45_0,
     author = {Giovanni Bellettini and Maurizio Paolini},
     title = {Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {6},
     year = {1995},
     pages = {45-54},
     zbl = {0834.35062},
     mrnumber = {1340281},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RLIN_1995_9_6_1_45_0}
}
Bellettini, Giovanni; Paolini, Maurizio. Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995) pp. 45-54. http://gdmltest.u-ga.fr/item/RLIN_1995_9_6_1_45_0/

[1] Almgren, F. - Taylor, J. E. - Wang, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. | MR 1205983 | Zbl 0783.35002

[2] Ambrosio, L. - Soner, H.-M., A level set approach to the evolution of surfaces of any codimension. Preprint Scuola Normale Superiore di Pisa, Ottobre 1994.

[3] Barles, G. - Soner, H.-M. - Souganidis, P. E., Front propagation and phase field theory. SIAM J. Control Optim., 31, 1993, 439-469. | MR 1205984 | Zbl 0785.35049

[4] Bellettini, G. - Paolini, M., Two examples of fattening for the curvature flow with a driving force. Rend. Mat. Acc. Lincei, s. 9, v. 5, 1994, 229-236. | MR 1298266 | Zbl 0826.35051

[5] Bellettini, G. - Paolini, M., Some comparison results between different notions of motion by mean curvature. Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica, in corso di stampa.

[6] Brakke, K. A., The Motion of a Surface by its Mean Curvature. Princeton University Press, Princeton1978. | MR 485012 | Zbl 0386.53047

[7] Bronsard, L. - Kohn, R. V., Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations, 90, 1991, 211-237. | MR 1101239 | Zbl 0735.35072

[8] Chen, Y. G. - Giga, Y. - Goto, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differential Geom., 33, 1991, 749-786. | MR 1100211 | Zbl 0696.35087

[9] Crandall, M. G. - Ishii, H. - Lions, P.-L., User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27, 1992, 1-67. | MR 1118699 | Zbl 0755.35015

[10] Crandall, M. G. - Lions, P.-L., Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 227, 1983, 1-42. | MR 690039 | Zbl 0599.35024

[11] De Giorgi, E., Some conjectures on flow by mean curvature. In: M. L. Benevento - T. Bruno - C. Sbordone (eds.), Methods of Real Analysis and Partial Differential Equations. Liguori, Napoli 1990. | Zbl 0840.35042

[12] De Giorgi, E., Congetture sui limiti delle soluzioni di alcune equazioni paraboliche quasi lineari. In: Nonlinear Analysis. A Tribute in Honour of G. Prodi. S.N.S. Quaderni, Pisa1991, 173-187. | Zbl 0840.35012

[13] De Giorgi, E., New problems on minimizing movements. In: J.-L. Lions - C. Baiocchi (eds.), Boundary Value Problems for Partial Differential Equations and Applications. 29 Masson, Paris 1993. | MR 1260440 | Zbl 0851.35052

[14] De Giorgi, E., Barriere, frontiere, e movimenti di varietà. Conferenza tenuta al Dipartimento di Matematica dell'Università di Pavia, 18 marzo 1994.

[15] De Mottoni, P. - Schatzman, M., Geometrical evolution of developped interfaces. Trans. Amer. Math. Soc., in corso di stampa. | Zbl 0797.35077

[16] Evans, L. C. - Soner, H.-M. - Souganidis, P. E., Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45, 1992, 1097-1123. | MR 1177477 | Zbl 0801.35045

[17] Evans, L. C. - Spruck, J., Motion of level sets by mean curvature. I. J. Differential Geom., 33, 1991, 635-681. | MR 1100206 | Zbl 0726.53029

[18] Evans, L. C. - Spruck, J., Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc., 330, 1992, 321-332. | MR 1068927 | Zbl 0776.53005

[19] Evans, L. C. - Spruck, J., Motion of level sets by mean curvature. III. J. Geom. An., 2, 1992, 121-150. | MR 1151756 | Zbl 0768.53003

[20] Gage, M., Curve shortening makes curves circular. Invent. Math., 76, 1984, 357-364. | MR 742856 | Zbl 0542.53004

[21] Gage, M. - Hamilton, R., The heat equations shrinking convex plane curves. J. Differential Geom., 23, 1986, 69-96. | MR 840401 | Zbl 0621.53001

[22] Giga, Y. - Goto, S., Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan, 44, 1992, 99-111. | MR 1139660 | Zbl 0739.53005

[23] Giga, Y. - Goto, S. - Ishii, H., Global existence of weak solutions for interface equations coupled with diffusion equations. SIAM J. Math. Anal., 23, 1992, 821-835. | MR 1166559 | Zbl 0754.35061

[24] Giga, Y. - Goto, S. - Ishii, H. - Sato, M. H., Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 1991, 443-470. | MR 1119185 | Zbl 0836.35009

[25] Grayson, M. A., The heat equation shrinks embedded plane curves to round points. J. Differential Geom., 26, 1987, 285-314. | MR 906392 | Zbl 0667.53001

[26] Grayson, M. A., Shortening embedded curves. Ann. of Math., 129, 1989, 71-111. | MR 979601 | Zbl 0686.53036

[27] Huisken, G., Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 20, 1984, 237-266. | MR 772132 | Zbl 0556.53001

[28] Ilmanen, T., The level-set flow on a manifold. In: Proceedings of Symposia in Pure Mathematics. Amer. Math. Soc., 54, Part I, 1993, 193-204. | MR 1216585 | Zbl 0827.53014

[29] Ilmanen, T., Generalized flow of sets by mean curvature on a manifold. Indiana Univ. Math. J., 41, 3, 1992, 671-705. | MR 1189906 | Zbl 0759.53035

[30] Ilmanen, T., Convergence of the Allen-Cahn equation to Brakkes motion by mean curvature. J. Differential Geom., 38, 1993, 417-461. | MR 1237490 | Zbl 0784.53035

[31] Ilmanen, T., Elliptic Regularization and Partial Regularity for Motion by Mean Curvature. Memoirs of the Amer. Math. Soc., 250, 1994, 1-90. | MR 1196160 | Zbl 0798.35066

[32] Ishii, H., On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE's. Comm. Pure Appl. Math., 42, 1989, 15-45. | MR 973743 | Zbl 0645.35025

[33] Jensen, R., The maximum principle for viscosity solutions of second-order fully nonlinear partial differential equations. Arch. Rational Mech. Anal., 101, 1988, 1-27. | MR 920674 | Zbl 0708.35019

[34] Lions, P.-L., Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, I. Comm. Partial Differential Equations, 8, 1983, 1101-1134. | MR 709164 | Zbl 0716.49022

[35] Modica, L. - Mortola, S., Un esempio di Γ-convergenza. Boll. Un. Mat. Ital., B (5), 14, 1977, 285-299. | MR 445362 | Zbl 0356.49008

[36] Osher, S. - Sethian, J. A., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79, 1988, 12-49. | MR 965860 | Zbl 0659.65132

[37] Soner, H.-M., Motion of a set by the curvature of its boundary. J. Differential Equations, 101, 1993, 313-372. | MR 1204331 | Zbl 0769.35070

[38] Soner, H.-M., Ginzburg-Landau equation and motion by mean curvature, I: convergence. Research report n. 93-NA-026, August 1993, Carnegie Mellon University. | Zbl 0935.35060

[39] Soner, H.-M. - Souganidis, P. E., Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Comm. Partial Differential Equations, 18, 1993, 859-894. | MR 1218522 | Zbl 0804.53006