Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces
Biroli, Marco ; Mosco, Umberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995), p. 37-44 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove local embeddings of Sobolev and Morrey type for Dirichlet forms on spaces of homogeneous type. Our results apply to some general classes of selfadjoint subelliptic operators as well as to Dirichlet operators on certain self-similar fractals, like the Sierpinski gasket. We also define intrinsic BV spaces and perimeters and prove related isoperimetric inequalities.

Si provano risultati di immersione locale del tipo Sobolev e Morrey per forme di Dirichlet su spazi di tipo omogeneo. I risultati si applicano a certe classi generali di operatori subellitici e a operatori di Dirichlet su certi frattali come il «Sierpinski gasket». Si definiscono inoltre spazi BV e perimetri intrinseci e si ottengono per essi diseguaglianze isoperimetriche.

Publié le : 1995-03-01
@article{RLIN_1995_9_6_1_37_0,
     author = {Marco Biroli and Umberto Mosco},
     title = {Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {6},
     year = {1995},
     pages = {37-44},
     zbl = {0837.31006},
     mrnumber = {1340280},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1995_9_6_1_37_0}
}
Biroli, Marco; Mosco, Umberto. Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 6 (1995) pp. 37-44. http://gdmltest.u-ga.fr/item/RLIN_1995_9_6_1_37_0/

[1] Biroli, M. - Mosco, U., Formes de Dirichlet et estimations structurelles dans les milieux discontinus. C.R. Acad. Sci. Paris, Série I, 313, 1991, 593-598. | MR 1133491 | Zbl 0760.49004

[2] Biroli, M. - Mosco, U., A Saint-Venant principle for Dirichlet forms on discontinuous media. Preprint Series Univ. Bonn SBF 256 n. 224, 1992; revised Publ. Lab. An. Num. Univ. Paris VI, 1993, Ann. Mat. Pura Appl., in print. | Zbl 0851.31008

[3] Biroli, M. - Mosco, U., Sobolev inequalities for Dirichlet forms on homogeneous spaces. In: C. Baiocchi J. L. Lions (eds.), Boundary Value Problems for Partial Differential Equations and Applications. Research Notes in Applied Mathematics, Masson, 1993. | MR 1260455 | Zbl 0820.35035

[4] Burger, N., Espace des fonctions à variation bornée sur un espace de nature homogène. C.R. Acad. Sci. Paris, Série I, 286, 1978, 139-142. | MR 467176 | Zbl 0368.46037

[5] Coifman, R. R. - Weiss, G., Analyse harmonique sur certaines espaces homogènes. Lectures Notes in Mathematics, 242, Springer-Verlag, Berlin-Heidelberg-New York 1971. | MR 499948 | Zbl 0224.43006

[6] Coulhon, T., Espaces de Lipschitz et inégalités de Poincaré. To appear. | Zbl 0859.58009

[7] Fabes, E. - Kenig, C. - Serapioni, R., The local regularity of solutions of degenerate elliptic equations. Comm. in P.D.E., 7, 1982, 77-116. | MR 643158 | Zbl 0498.35042

[8] Fefferman, C. L. - Phong, D. H., Subelliptic eigenvalue problems. In: W. Beckner et al. (eds.), Conference on Harmonic Analysis in Honor of A. Zygmund. Vol. 2, Wadsworth Math. Series, Chicago 1983, 590-606. | MR 730094 | Zbl 0503.35071

[9] Folland, G. B. - Stein, E. M., Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton 1982. | MR 657581 | Zbl 0508.42025

[10] Franchi, B. - Lanconelli, E., An embedding theorem for Sobolev spaces related to nonsmooth vector fields and Harnack inequality. Comm. in P.D.E., 9, 1984, 1237-1264. | MR 764663 | Zbl 0589.46023

[11] Franchi, B. - Gallot, S. - Wheeden, R. L., Inégalités isopérimétriques pour les métriques dégénérées. C.R. Acad. Sci. Paris, Série I, 317, 1993, 651-654. | MR 1245092 | Zbl 0794.51011

[12] Fukushima, M., Dirichlet Forms and Markov Processes. North-Holland Math. Library, North-Holland, Amsterdam1980. | MR 569058 | Zbl 0422.31007

[13] Fukushima, M. - Shima, T., On a spectral analysis for the Sierpinski gasket. Potential An., 1, 1992, 1-35. | MR 1245223 | Zbl 1081.31501

[14] Jerison, D., The Poincaré inequalities for vector fields satisfying Hörmander's condition. Duke Math. Jour., 53, 1986, 505-523. | Zbl 0614.35066

[15] Kigami, J., A harmonic calculus on the Sierpinski spaces. Japan Jour. Appl. Math., 6, 1989, 252-290. | MR 1001286 | Zbl 0686.31003

[16] Kozlov, S. M., Harmonization and homogenization on fractals. Comm. Math. Phys., 153, 1993, 339-357. | MR 1218305 | Zbl 0767.58033

[17] Kusuoka, S., A diffusion process on fractals. In: K. Itô - N. Ikeda (eds.), Proceedings of the Taniguchi Symposium (Katata 1985), North-Holland, Amsterdam 1987, 251-274. | MR 933827 | Zbl 0645.60081

[18] Lohoué, N., Estimées de type Hardy-Sobolev sur certaines variétés riemanniennes et les groupes de Lie. Jour. Func. An., 112, 1993, 121-158. | MR 1207939 | Zbl 0773.58003

[19] Lu, G., Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander condition and applications. Riv. Iberoam., 8 (3), 1992, 367-440. | MR 1202416 | Zbl 0804.35015

[20] Macias, R. M. - Segovia, C., Lipschitz functions on spaces of homogeneous type. Advances in Math., 33, 1979, 257-270. | MR 546295 | Zbl 0431.46018

[21] Mosco, U. - Notarantonio, L., Homogeneous fractal spaces. To appear. | MR 1414498 | Zbl 0877.46028

[22] Nagel, A. - Stein, E. M. - Wainger, S., Balls and metrics defined by vector fields I: Basic properties. Acta Math., 155, 1985, 103-147. | MR 793239 | Zbl 0578.32044

[23] Saloff-Coste, L., Uniformly elliptic operators on Riemannian manifolds. Jour. Diff. Geom., 36, 1992, 417-450. | MR 1180389 | Zbl 0735.58032

[24] Varopoulos, N. Th., Sobolev inequalities on Lie groups and symmetric spaces. Jour. Func. An., 86, 1989, 19-40. | MR 1013932 | Zbl 0697.22013