The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of C*-algebras
Włodarczyk, Kazimierz
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994), p. 309-328 / Harvested from Biblioteca Digitale Italiana di Matematica

The aim of this paper is to start a systematic investigation of the existence of angular limits and angular derivatives of holomorphic maps of infinite dimensional Siegel domains in J*-algebras. Since J*-algebras are natural generalizations of C*-algebras, B*-algebras, JC*-algebras, ternary algebras and complex Hilbert spaces, various significant results follow. Examples are given.

Questo articolo ha lo scopo di avviare uno studio sistematico dell'esistenza di limiti e derivate angolari di mappe olomorfe di domini di Siegel di dimensione infinita in algebre J*. Poiché le algebre J* sono generalizzazioni naturali di algebre C*, algebre B*, algebre JC*, algebre ternarie e spazi di Hilbert complessi, ne seguono diversi risultati significativi. Vengono esaminati alcuni esempi.

Publié le : 1994-12-01
@article{RLIN_1994_9_5_4_309_0,
     author = {Kazimierz W\l odarczyk},
     title = {The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {5},
     year = {1994},
     pages = {309-328},
     zbl = {0827.47030},
     mrnumber = {1320583},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1994_9_5_4_309_0}
}
Włodarczyk, Kazimierz. The existence of angular derivatives of holomorphic maps of Siegel domains in a generalization of \( C^{*} \)-algebras. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994) pp. 309-328. http://gdmltest.u-ga.fr/item/RLIN_1994_9_5_4_309_0/

[1] Ando, T. - Fan, Ky, Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. | MR 542181 | Zbl 0389.47004

[2] Burckel, R. B., An Introduction to Classical Complex Analysis. Vol. I, Academic Press, New York-San Francisco1979. | MR 555733 | Zbl 0434.30002

[3] Carathéodory, C., Über die Winkelderivierten von beschränkten analytischen Functionen. Sitz. Ber. Preuss. Akad., Phys.-Math., IV, 1929, 1-18. | JFM 55.0209.02

[4] Carathéodory, C., Conformal Representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge1952. | Zbl 0047.07905

[5] Carathéodory, C., Theory of Functions. Vol. 2, Chelsea Publishing Company, New York1960. | Zbl 0056.06703

[6] Cartan, E., Sur les domaines bornés homogènes de l'espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. | Zbl 0011.12302

[7] Cowen, C. C. - Pommerenke, Ch., Inequalities for the angular derivative of an analytic function in the unit disk. J. London Math. Soc., (2), 26, 1982, 271-289. | MR 675170 | Zbl 0476.30001

[8] Dineen, S., The Schwarz Lemma. Oxford Mathematical Monographs, Clarendon Press, Oxford1989. | MR 1033739 | Zbl 0708.46046

[9] Eke, B. G., On the angular derivative of regular functions. Math. Scand., 21, 1967, 122-127. | MR 241617 | Zbl 0167.06301

[10] Fan, Ky, Iteration of analytic functions of operators. Math. Z., 179, 1982, 293-298. | MR 649033 | Zbl 0465.47017

[11] Fan, Ky, The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. | MR 815033 | Zbl 0588.47018

[12] Franzoni, T. - Vesentini, E., Holomorphic Maps and Invariant Distances. North-Holland Mathematics Studies 40, Amsterdam-New York-Oxford 1980. | MR 563329 | Zbl 0447.46040

[13] Goldberg, J. L., Functions with positive real part in a half plane. Duke Math. J., 29, 1962, 333-339. | MR 164041 | Zbl 0101.29702

[14] Harris, L. A., Banach algebras with involution and Möbius transformations. J. Functional Anal., 11, 1972, 1-16. | MR 352994 | Zbl 0239.46058

[15] Harris, L. A., Bounded Symmetric Homogeneous Domains in Infinite Dimensional Spaces. Lecture Notes in Mathematics, 364, Springer-Verlag, Berlin-Heidelberg-New York1974, 13-40. | MR 407330 | Zbl 0293.46049

[16] Harris, L. A., Operator Siegel domains. Proc. Roy. Soc. Edinburgh, 79 A, 1977, 137-156. | MR 484600 | Zbl 0376.32027

[17] Harris, L. A., A generalization of C*-algebras. Proc. London Math. Soc., (3), 41, 1981, 331- 361. | MR 607306 | Zbl 0476.46054

[18] Harris, L. A., Linear fractional transformations of circular domains in operator spaces. Indiana Univ. Math. J., 41, 1992, 125-147. | MR 1160906 | Zbl 0760.47018

[19] Hua, L.-K., On the theory of automorphic functions of a matrix variable I - Geometrical Basis. Amer. J. Math., 66, 1944, 470-488. | MR 11133 | Zbl 0063.02919

[20] Hua, L.-K., On the theory of automorphic functions of a matrix variable II - The classification of hypercircles under the symplectic group. Amer. J. Math., 66, 1944, 531-563. | MR 11134 | Zbl 0063.02920

[21] Kaup, W., Algebraic characterization of symmetric complex Banach manifolds. Math. Ann., 228, 1977, 39-64. | MR 454091 | Zbl 0335.58005

[22] Kaup, W., Bounded symmetric domains in complex Hilbert spaces. Symp. Math., Istituto Nazionale di Alta Matematica Francesco Severi, 26, 1982, 11-21. | MR 663020 | Zbl 0482.32012

[23] Kin, Y.-L., Inequalities for fixed points of holomorphic functions. Bull. London Math. Soc., 22, 1990, 446-452. | MR 1082013 | Zbl 0725.30012

[24] Koecher, M., An Elementary Approach to Bounded Symmetric Domain. Rice Univ., Houston, Texas1969. | MR 261032 | Zbl 0217.10901

[25] Koranyi, A. - Wolff, J., Generalized Cayley transformations of bounded symmetric domains. Amer. J. Math., 87, 1965, 899-939. | MR 192002 | Zbl 0137.27403

[26] Koranyi, A. - Wolff, J., Realization of hermitian symmetric spaces as generalized half-planes. Ann. of Math., 81, 1965, 265-288. | MR 174787 | Zbl 0137.27402

[27] Landau, E. - Valiron, G., A deduction from Schwarzs lemma. J. London Math. Soc., 4, 1929, 162-163. | JFM 55.0769.02 | MR 1575036

[28] Loos, O., Jordan triple systems, R-spaces and bounded symmetric domains. Bull. Amer. Math. Soc., 77, 1971, 558-561. | MR 281846 | Zbl 0228.32012

[29] Loos, O., Bounded symmetric domains and Jordan pairs. Univ. of California, Irvine1977.

[30] Maccluer, B. D. - Shapiro, J. H., Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian J. Math., 38, 1986, 878-906. | MR 854144 | Zbl 0608.30050

[31] Nachbin, L., Topology on Spaces of Holomorphic Mappings. Springer-Verlag, Berlin-Heidelberg-New York1969. | MR 254579 | Zbl 0172.39902

[32] Nevanlinna, R., Analytic Functions. Springer-Verlag, Berlin-Heidelberg-New York1969. | MR 279280 | Zbl 0199.12501

[33] Pjatetskij-Shapiro, I. I., Automorphic Functions and the Geometry of Classical Domains. Gordon-Breach, New York1969. | MR 252690 | Zbl 0196.09901

[34] Pommerenke, Ch., Univalent Functions. Vandehoeck and Ruprecht, Göttingen1975. | MR 507768 | Zbl 0298.30014

[35] Rudin, W., Function Theory in the Unit Ball of Cn. Springer-Verlag, New York-Heidelberg-Berlin1980. | MR 601594 | Zbl 1139.32001

[36] Sarason, D., Angular derivatives via Hilbert space. Complex Variables Theory Appl., 10, 1988, 1-10. | MR 946094 | Zbl 0635.30024

[37] Shapiro, J. H., Composition Operators and Classical Function Theory. Springer-Verlag, New York1993. | MR 1237406 | Zbl 0791.30033

[38] Upmeier, H., Symmetric Banach Manifolds and Jordan C*-Algebras. North-Holland, Amsterdam, Math. Studies, vol. 104, 1985. | MR 776786 | Zbl 0561.46032

[39] Upmeier, H., Jordan algebras in analysis, operator theory, and quantum mechanics. Regional Conference Series in Math., 67, Amer. Math. Soc., Providence, RI, 1987. | MR 874756 | Zbl 0608.17013

[40] Valiron, G., Fonctions analytiques. Presses Univ. de France, Paris1954. | MR 61658 | Zbl 0055.06702

[41] Vesentini, E., Su un teorema di Wolff e Denjoy. Rend. Sem. Mat. Fis. Milano, LIII, 1983, 17-25. | MR 858531 | Zbl 0596.30038

[42] Warschawski, E., Remarks on the angular derivatives. Nagoya Math. J., 42, 1971, 19-32. | MR 274733 | Zbl 0209.11002

[43] Włodarczyk, K., On holomorphic maps in Banach spaces and J*-algebras. Quart. J. Math. Oxford, (2), 36, 1985, 495-511. | MR 816489 | Zbl 0595.46048

[44] Włodarczyk, K., Pick-Julia theorems for holomorphic maps in J*-algebras and Hilbert spaces. J. Math. Anal. Appl., 120, 1986, 567-571. | MR 864774 | Zbl 0612.46044

[45] Włodarczyk, K., Studies of iterations of holomorphic maps in J*-algebras and complex Hilbert spaces. Quart. J. Math. Oxford, (2), 37, 1986, 245-256. | MR 841432 | Zbl 0595.47046

[46] Włodarczyk, K., Julia's lemma and Wolff's theorem for J*-algebras and complex Hilbert spaces. Proc. Amer. Math. Soc., 99, 1987, 472-476. | Zbl 0621.46041

[47] Włodarczyk, K., The angular derivative of Fréchet-holomorphic maps in J*-algebras and complex Hilbert spaces. Proc. Kon. Nederl. Akad. Wetensch., A91, 1988, 455-468; Indag. Math., 50, 1988, 455-468. | MR 976528 | Zbl 0665.46034

[48] Włodarczyk, K., Hyperbolic geometry in bounded symmetric homogeneous domains of J*-algebras. Atti Sem. Mat. Fis. Univ. Modena, 39, 1991, 201-211. | MR 1111769 | Zbl 0744.46035

[49] Włodarczyk, K., The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces. Rend. Mat. Acc. Lincei., s. 9, 4, 1993, 171-179. | MR 1250495 | Zbl 0817.46048

[50] Włodarczyk, K., Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains. Rend. Mat. Acc. Lincei, s. 9, 5, 1994, 43-53. | MR 1273892 | Zbl 0802.46060