On fixed points of C1 extensions of expanding maps in the unit disc
Tauraso, Roberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994), p. 303-308 / Harvested from Biblioteca Digitale Italiana di Matematica

Using a result due to M. Shub, a theorem about the existence of fixed points inside the unit disc for C1 extensions of expanding maps defined on the boundary is established. An application to a special class of rational maps on the Riemann sphere and some considerations on ergodic properties of these maps are also made.

Sulla base di un risultato di M. Shub, si dimostra un teorema riguardante la presenza di punti fissi all'interno del disco unitario per estensioni C1 di funzioni espansive definite sul bordo. La Nota si conclude con un'applicazione ad una classe di funzioni razionali della sfera di Riemann e alcune considerazioni sulle proprietà ergodiche di tali funzioni.

Publié le : 1994-12-01
@article{RLIN_1994_9_5_4_303_0,
     author = {Roberto Tauraso},
     title = {On fixed points of \( C^{1} \) extensions of expanding maps in the unit disc},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {5},
     year = {1994},
     pages = {303-308},
     zbl = {0827.30022},
     mrnumber = {1320582},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1994_9_5_4_303_0}
}
Tauraso, Roberto. On fixed points of \( C^{1} \) extensions of expanding maps in the unit disc. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994) pp. 303-308. http://gdmltest.u-ga.fr/item/RLIN_1994_9_5_4_303_0/

[1] Abate, M., Iteration Theory of Holomorphic Maps on Taut Manifolds. Mediterranean Press, Commenda di Rende1989. | MR 1098711 | Zbl 0747.32002

[2] Brolin, H., Invariant sets under iteration of rational function. Ark. Mat., vol. 6, 1965, 103-144. | MR 194595 | Zbl 0127.03401

[3] Brown, R. F., The Lefschetz Fixed Point Theorem. Scott, Foresman and Co., Glenview1971. | MR 283793 | Zbl 0216.19601

[4] Brown, R. F. - Greene, R. E., An interior fixed point property of the disc. Amer. Math. Monthly, vol. 101, 1994, 39-47. | MR 1252704 | Zbl 0813.54030

[5] Brown, R. F. - Greene, R. E. - Schirmer, H., Fixed points of map extension. In: Topological Fixed Point Theory and Applications. Prooceedings (Tianjin, 1988). Lecture Notes in Mathematics, vol. 1411, Springer-Verlag, Berlin 1989. | MR 1031780 | Zbl 0688.55002

[6] Burckel, R. B., Iterating analytic self-maps of discs. Amer. Math. Monthly, vol. 88, 1981, 387-460. | MR 622955 | Zbl 0466.30001

[7] Gamelin, T. W. - Greene, R. E., Introduction to Topology. Saunders College Publ., Philadelphia 1983. | MR 696379 | Zbl 0625.54002

[8] Martin, N. F. G., On Finite Blaschke Products whose restriction to the unit circle are exact endomorphisms. Bull. London Math. Soc., vol. 15, 1983, 343-348. | MR 703758 | Zbl 0487.28017

[9] Nitecki, Z., Differentiable Dynamics. The M.I.T. Press, Cambridge, Mass.1971. | MR 649788 | Zbl 0246.58012

[10] Pommerenke, C., Boundary behaviour of Conformal Maps. Springer-Verlag, New York1992. | MR 1217706 | Zbl 0762.30001

[11] Rudin, W., Real and Complex Analysis. McGraw-Hill, New York1966. | MR 210528 | Zbl 0925.00005

[12] Shub, M., Endomorphisms of compact differentiable manifolds. Amer. J. Math., vol. 91, 1969, 175-199. | MR 240824 | Zbl 0201.56305

[13] Steinmetz, N., Rational Iteration. De Gruyter, Berlin1993. | MR 1224235 | Zbl 0773.58010

[14] Walters, P., Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc., vol. 236, 1978, 121-153. | MR 466493 | Zbl 0375.28009

[15] Walters, P., An Introduction to Ergodic Theory. Springer-Verlag, New York1982. | MR 648108 | Zbl 0299.28012