We establish the continuity of bounded local solutions of the equation . Here is any coercive maximal monotone graph in , bounded for bounded values of its argument. The multiphase Stefan problem and the Buckley-Leverett model of two immiscible fluids in a porous medium give rise to such singular equations.
In questa Nota si dimostra la continuità delle soluzioni locali limitate dell'equazione , dove è un qualsiasi grafo massimale monotono e coercivo in , che si mantiene limitato per valori limitati del suo argomento. A questo contesto appartengono sia il problema di Stefan multifase che il modello di Buckley-Leverett di due fluidi immiscibili in un mezzo poroso.
@article{RLIN_1994_9_5_4_297_0, author = {Emmanuele DiBenedetto and Vincenzo Vespri}, title = {Continuity for bounded solutions of multiphase Stefan problem}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {5}, year = {1994}, pages = {297-302}, zbl = {0824.35142}, mrnumber = {1320581}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1994_9_5_4_297_0} }
DiBenedetto, Emmanuele; Vespri, Vincenzo. Continuity for bounded solutions of multiphase Stefan problem. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994) pp. 297-302. http://gdmltest.u-ga.fr/item/RLIN_1994_9_5_4_297_0/
[1] Non steady flow of water and oil through inhomogeneous porous media. Ann. Sc. Norm. Sup. Pisa, s. IV, vol. XII, 3, 1985, 335-392. | MR 837254 | Zbl 0608.76082
- ,[2] Continuity of the temperature in the two phase Stefan problem. Arch. Rat. Mech. Anal., 81, 1983, 199-220. | MR 683353 | Zbl 0516.35080
- ,[3] | Zbl 0603.76101
- , Mathematical Models and Finite Elements Methods for Reservoir Simulation. North-Holland 1986.[4] Continuity of weak solutions to certain singular parabolic equations. Ann. Mat. Pura Appl., (4), CXXI, 1982, 131-176. | MR 663969 | Zbl 0503.35018
,[5] The flow of two immiscible fluids through a porous medium: Regularity of the saturation. In: - (eds.), Theory and Applications of Liquid Crystals. IMA, vol. 5, Springer-Verlag, New York 1987, 123-141. | MR 900832 | Zbl 0694.35099
,[6] On the singular equation . To appear. | MR 1365831 | Zbl 0849.35060
- ,[7] | MR 679313 | Zbl 0564.49002
, Variational Principles and Free Boundary Problems. Wiley-Interscience, New York1982.[8] Boundary value problems for systems of equations of two phase porous flow type: statement of the problems, questions of solvability, justification of approximate methods. Mat. Sbornik, 44, 1977, 62-80. | Zbl 0398.35039
- ,[9] 23, Providence RI 1968. | MR 241822 | Zbl 0174.15403
- - , Linear and Quasilinear Equations of Parabolic Type. AMS Transl. Math. Mono,[10] | MR 259693 | Zbl 0189.40603
, Quelques méthodes de résolutions des problèmes aux limites non linéaires. Dunod Gauthiers-Villars, Paris1969.[11] The initial and boundary value problem for a class of degenerate parabolic equations. Comm. Part. Diff. Equ., 8, 1983, 693-734. | Zbl 0529.35038
,[12] Interior and boundary continuity of weak solutions of degenerate parabolic equations. Trans. Amer. Math. Soc., 271 (2), 1982, 733-748. | MR 654859 | Zbl 0506.35053
,