In this paper we study the influence of the domain topology on the multiplicity of solutions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is stable under small perturbations of the domain.
In questo lavoro studiamo l'influenza della topologia del dominio sul numero delle soluzioni di un problema di Neumann semilineare. In particolare, mostriamo che il numero delle soluzioni positive è stabile per piccole perturbazioni del dominio.
@article{RLIN_1994_9_5_3_237_0, author = {Anna Maria Candela and Monica Lazzo}, title = {Remarks on positive solutions to a semilinear Neumann problem}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {5}, year = {1994}, pages = {237-246}, zbl = {0831.35059}, mrnumber = {1298267}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1994_9_5_3_237_0} }
Candela, Anna Maria; Lazzo, Monica. Remarks on positive solutions to a semilinear Neumann problem. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994) pp. 237-246. http://gdmltest.u-ga.fr/item/RLIN_1994_9_5_3_237_0/
[1] The effect of the domain topology on the number of solutions of nonlinear elliptic problems. Arch. Rat. Mech. Anal., 114, 1991, 79-93. | MR 1088278 | Zbl 0727.35055
- ,[2] Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. To appear. | MR 1384393 | Zbl 0822.35046
- ,[3] On the number of the positive solutions of some nonlinear elliptic problems.A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa, 1991, 93-107. | MR 1205376 | Zbl 0838.35040
- - ,[4] Equations de champs scalaires euclidiens nonlinéaires dans le plan. C. R. Acad. Sc. Paris, Série I Math., 297, 1983, 307-310. | MR 734575 | Zbl 0544.35042
- - ,[5] Nonlinear scalar field equations, I-Existence of a ground state. Arch. Rat. Mech. Anal., 82, 1983, 313-375. | MR 695535 | Zbl 0533.35029
- ,[6] Action minima among solutions to a class of Euclidean scalar field equations. Comm. Math. Phys., 58, 1978, 211-221. | MR 468913
- - ,[7] 12, 1972.
- , A theory of biological pattern formation. Kybernetik (Berline),[8] Uniqueness of positive solutions of in . Arch. Rat. Mech. Anal., 105, 1989, 243-266. | MR 969899 | Zbl 0676.35032
,[9] Morse theory and multiple positive solutions to a Neumann problem. Ann. Mat. Pura e Appl., to appear. | MR 1378245 | Zbl 0849.35034
,[10] Large amplitude stationary solutions to a chemotaxis system. Jour. Diff. Eq., 72, 1988, 1-27. | MR 929196 | Zbl 0676.35030
- - ,[11] The role of the boundary in some semilinear Neumann problems. Rend. Sem. Mat. Padova, 88, 1992, 127-138. | MR 1209119 | Zbl 0814.35037
- ,[12] On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math., 45, 1991, 819-851. | MR 1115095 | Zbl 0754.35042
- ,[13] On the existence of multiple, single-peaked solutions for a semilinear Neumann problem. Arch. Rat. Mech. Anal., 120, 1992, 375-399. | MR 1185568 | Zbl 0784.35035
,