Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators
Franchi, Bruno ; Gutiérrez, Cristian E. ; Wheeden, Richard L.
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994), p. 167-175 / Harvested from Biblioteca Digitale Italiana di Matematica

In this Note we prove a two-weight Sobolev-Poincaré inequality for the function spaces associated with a Grushin type operator. Conditions on the weights are formulated in terms of a strong A weight with respect to the metric associated with the operator. Roughly speaking, the strong A condition provides relationships between line and solid integrals of the weight. Then, this result is applied in order to prove Harnack's inequality for positive weak solutions of some degenerate elliptic equations.

In questa Nota proviamo una disuguaglianza di Sobolev-Poincaré con due pesi per gli spazi funzionali associati ad un operatore tipo Grushin. Le condizioni sui pesi sono formulate in termini di un dato peso fortemente A rispetto a una metrica naturale per l'operatore, dove la condizione A-forte richiede opportune relazioni tra gli integrali di linea e gli integrali solidi del peso. Successivamente, questo risultato è applicato per provare la disuguaglianza di Harnack per le soluzioni deboli positive di certe equazioni ellittiche degeneri.

Publié le : 1994-06-01
@article{RLIN_1994_9_5_2_167_0,
     author = {Bruno Franchi and Cristian E. Guti\'errez and Richard L. Wheeden},
     title = {Two-weight Sobolev-Poincar\'e inequalities and Harnack inequality for a class of degenerate elliptic operators},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {5},
     year = {1994},
     pages = {167-175},
     zbl = {0811.46023},
     mrnumber = {1292572},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1994_9_5_2_167_0}
}
Franchi, Bruno; Gutiérrez, Cristian E.; Wheeden, Richard L. Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994) pp. 167-175. http://gdmltest.u-ga.fr/item/RLIN_1994_9_5_2_167_0/

[1] Bojarske, B., Remarks on Sobolev imbedding inequalities. Complex Analysis, Lecture Notes in Mathematics1351, Springer, 1989, 52-68. | MR 982072 | Zbl 0662.46037

[2] Calderon, A. P., Inequalities for the maximal function relative to a metric. Studia Math., 57, 1976, 297-306. | MR 442579 | Zbl 0341.44007

[3] Capogna, L. - Danielli, D. - Garofalo, N., Embedding theorems and the Harnack inequality for solutions of nonlinear subelliptic equations. C.R. Acad. Sci. Paris, 316, 1993, 809-814. | MR 1218266 | Zbl 0797.35063

[4] Chanillo, S. - Wheeden, R. L., Weighted Poincaré and Sobolev inequalities and estimates for the Peano maximal function. Amer. J. Math., 107, 1985, 1191-1226. | MR 805809 | Zbl 0575.42026

[5] Chanillo, S. - Wheeden, R. L., Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations. Comm. Partial Differential Equations, 11, 1986, 1111-1134. | MR 847996 | Zbl 0634.35035

[6] Chua, S., Weighted Sobolev inequality on domains satisfying chain conditions. Proc. Amer. Math. Soc., to appear. | Zbl 0812.46020

[7] David, G. - Semmes, S., Strong A weights, Sobolev inequalities and quasiconformal mappings In: C. Sadosky (éd.), Analysis and Partial Differential Equations. Marcel Dekker, 1990, 101-111. | MR 1044784 | Zbl 0752.46014

[8] Fabes, E. - Kenig, C. - Serapioni, R., The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations, 7, 1982, 77-116. | MR 643158 | Zbl 0498.35042

[9] Fernandes, J. C., Mean value and Harnack inequalities for a certain class of degenerate parabolic equations. Revista Matematica Iberoamericana, 7, 1991, 247-286. | MR 1165071 | Zbl 0761.35050

[10] Fefferman, C. - Phong, D. H., Subelliptic eigenvalue problems. In: W. Beckner et al (eds.), Conference on Harmonic Analysis (Chicago 1980). Wadsworth 1981, 590-606. | MR 730094 | Zbl 0503.35071

[11] Franchi, B., Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations. Trans. Amer. Math. Soc., 327, 1991, 125-158. | MR 1040042 | Zbl 0751.46023

[12] Franchi, B., Inégalités de Sobolev pour des champs de vecteurs lipschitziens. C.R. Acad. Sci. Paris, 311, 1990, 329-332. | MR 1071637 | Zbl 0734.46023

[13] Franchi, B. - Lanconelli, E., Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa, 10, (4), 1983, 523-541. | MR 753153 | Zbl 0552.35032

[14] Franchi, B. - Serapioni, R., Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach. Ann. Scuola Norm. Sup. Pisa, 14, (4), 1987, 527-568. | MR 963489 | Zbl 0685.35046

[15] Franchi, B. - Gutierrez, C. - Wheeden, R. L., Weighted Sobolev-Poincaré inequalities for Grushin type operators. Comm. Partial Differential Equations, to appear. | MR 1265808 | Zbl 0822.46032

[16] Franchi, B. - Gallot, S. - Wheeden, R. L., Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., to appear. | MR 1314734 | Zbl 0830.46027

[17] Franchi, B. - Gallot, S. - Wheeden, R. L., Inégalités isopérimetriques pour des métriques dégénérées. C.R. Acad. Sci. Paris, Ser. A, 317, 1993, 651-654. | MR 1245092 | Zbl 0794.51011

[18] Gehring, F. W., The Lp-integrability of the partial derivatives of a quasi conformai mapping. Acta Math., 130, 1973, 265-277. | MR 402038 | Zbl 0258.30021

[19] Gutierrez, C. - Wheeden, R. L., Mean-value and Harnack inequalities for degenerate parabolic equations. Colloq. Math., 60/61, 1990, 157-194. | MR 1096367 | Zbl 0785.35057

[20] Iwaniek, T. - Nolder, C. A., Hardy-Littlewood inequality for quasiregular mappings in certain domains in Rn. Ann. Acad. Sci. Fenn., Series A I Math. 10, 1985, 267-282. | MR 802488 | Zbl 0588.30023

[21] Jerison, D., The Poincaré inequality for vector fields satisfying Hörmander condition. Duke Math. J., 53, 1986, 503-523. | MR 850547 | Zbl 0614.35066

[22] Lu, G., The sharp Poincaré inequality for free vector fields: an endpoint result. Revista Matématica Iberoamericana, to appear. | MR 1286482 | Zbl 0860.35006

[23] Nagel, A. - Stein, E. M. - Wainger, S., Balls and metrics defined by vector fields I: basic properties. Acta Math., 155, 1985, 103-147. | MR 793239 | Zbl 0578.32044

[24] Salinas, O., Harnack inequality and Green function for a certain class of degenerate elliptic differential operators. Revista Matematica Iberoamericana, 7, 1991, 313-349. | MR 1165073 | Zbl 0770.35023

[25] Sawyer, E. - Wheeden, R. L., Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Amer. J. Math., 114, 1992, 813-874. | MR 1175693 | Zbl 0783.42011