Finite groups with eight non-linear irreducible characters
Berkovich, Yakov
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994), p. 141-148 / Harvested from Biblioteca Digitale Italiana di Matematica

This Note contains the complete list of finite groups, having exactly eight non-linear irreducible characters. In section 4 we consider in full details some typical cases.

La Nota contiene la lista completa dei gruppi finiti con esattamente otto caratteri irriducibili non lineari. Sono riportate le dimostrazioni di alcuni casi tipici.

Publié le : 1994-06-01
@article{RLIN_1994_9_5_2_141_0,
     author = {Yakov Berkovich},
     title = {Finite groups with eight non-linear irreducible characters},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {5},
     year = {1994},
     pages = {141-148},
     zbl = {0809.20004},
     mrnumber = {1292569},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1994_9_5_2_141_0}
}
Berkovich, Yakov. Finite groups with eight non-linear irreducible characters. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994) pp. 141-148. http://gdmltest.u-ga.fr/item/RLIN_1994_9_5_2_141_0/

[1] Berkovich, Ya. G., Finite groups with a given number of conjugacy classes. Publ. Math. Debrecen, t. 33, fasc. 1-2, 1986, 107-123 (in Russian). | MR 854622 | Zbl 0635.20011

[2] Berkovich, Ya. G., Finite groups with the small number of irreducible non-linear characters. Izvestija Severo-Kavkazskogo nauchnogo Tzentra vyschei schkoly, Estestvennye nauki, 1 (57), 1987, 8-13 (in Russian). | MR 907973 | Zbl 0649.20006

[3] Berkovich, Ya. G., Finite groups with few non-linear irreducible characters. In: Questions of group theory and homological algebra. Jaroslavl, 1990, 97-107 (in Russian). | MR 1169969 | Zbl 0763.20003

[4] Berkovich, Ya. G. - Zhmud, E. M., Characters of finite groups. To appear. | Zbl 0934.20009

[5] Hansen, C. - Nielsen, J. M., Finite groups having exactly two non-linear irreducible characters. Prep. Ser. Aarhus Univ., 33, 1981-1982, 1-10. | Zbl 0494.20003

[6] Isaacs, I. M. - Passman, D. S., Groups with relatively few non-linear irreducible characters. Can. J. Math., vol. 20, 1968, 1451-1458. | MR 235049 | Zbl 0165.34303

[7] Isaacs, I. M., Character theory of finite groups. Acad. Press, 1976. | MR 460423 | Zbl 0337.20005

[8] Seitz, G., Finite groups having only one irreducible representation of degree greater than one. Proc. Amer. Math. Soc., vol. 19, 1968, 459-461. | MR 222160 | Zbl 0244.20010