Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains
Włodarczyk, Kazimierz
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994), p. 43-53 / Harvested from Biblioteca Digitale Italiana di Matematica

An infinite dimensional extension of the Pick-Julia theorem is used to derive the conditions of Carathéodory type which guarantee the existence of angular limits and angular derivatives for holomorphic maps of infinite dimensional bounded symmetric homogeneous domains in J*-algebras and in complex Hilbert spaces. The case of operator-valued analytic maps is considered and examples are given.

Da un'estensione di dimensione infinita del teorema di Pick-Julia vengono dedotte condizioni, «alla Carathéodory», sufficienti per l'esistenza di limiti angolari e derivate angolari per applicazioni olomorfe di domini limitati omogenei simmetrici in algebre J* ed in spazi di Hilbert. Si considerano alcuni esempi e si studiano funzioni analitiche i cui valori sono degli operatori.

Publié le : 1994-03-01
@article{RLIN_1994_9_5_1_43_0,
     author = {Kazimierz W\l odarczyk},
     title = {Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {5},
     year = {1994},
     pages = {43-53},
     zbl = {0802.46060},
     mrnumber = {1273892},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1994_9_5_1_43_0}
}
Włodarczyk, Kazimierz. Angular limits and derivatives for holomorphic maps of infinite dimensional bounded homogeneous domains. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 5 (1994) pp. 43-53. http://gdmltest.u-ga.fr/item/RLIN_1994_9_5_1_43_0/

[1] Ahlfors, L. V., Conformal invariants: topics in geometric function theory. McGraw-Hill, New York1973. | MR 357743 | Zbl 0272.30012

[2] Ando, T. - Fan, Ky, Pick-Julia theorems for operators. Math. Z., 168, 1979, 23-34. | MR 542181 | Zbl 0389.47004

[3] Barth, K. F. - Rippon, P. J. - Sons, L. S., Angular limits of holomorphic and meromorphic functions. J. London Math. Soc., (2), 42, 1990, 279-291. | MR 1083446 | Zbl 0682.30023

[4] Berman, R. D., Angular limits and infinite asymptotic values of analytic functions of slow growth. Ill. J. Math., 34, 1990, 845-858. | MR 1062778 | Zbl 0701.30028

[5] Carathéodory, C., Conformal representations. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge1952. | Zbl 0047.07905

[6] Carathéodory, C., Über die Winkelderivierten von beschrankten analytischen Functionen. Sitz. Ber. Preuss. Akad., Phys.-Math., IV, 1929, 1-18. | JFM 55.0209.02

[7] Carathéodory, C., Theory of functions. Vol. 2. Chelsea Publishing Company, New York1960. | Zbl 0056.06703

[8] Cartan, E., Sur les domaines bornés homogènees de l'espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg, 11, 1935, 116-162. | Zbl 0011.12302

[9] Fan, Ky, The angular derivative of an operator-valued analytic function. Pacific J. Math., 121, 1986, 67-72. | MR 815033 | Zbl 0588.47018

[10] Gardiner, S. J., Angular limits of holomorphic functions which satisfy an integrability condition. Monatsh. Math., 114, 1992, 97-106. | MR 1191814 | Zbl 0765.30018

[11] Girela, D., Non-tangential limits for analytic functions of slow growth in a disc. J. London Math. Soc., (2), 46, 1992, 140-148. | MR 1180889 | Zbl 0755.30031

[12] Goldberg, J. L., Functions with positive real part in a half plane. Duke Math. J., 29, 1962, 333-339. | MR 164041 | Zbl 0101.29702

[13] Harris, L. A., Bounded symmetric homogeneous domains in infinite dimensional spaces. Lecture Notes in Mathematics, 364, Springer-Verlag, Berlin-Heidelberg-New York1974, 13-40. | MR 407330 | Zbl 0293.46049

[14] Maccluer, B.D. - Shapiro, J. H., Angular derivatives and compact composition operators on the Hardy and Bergman spaces. Canadian J. Math., 38, 1986, 878-906. | MR 854144 | Zbl 0608.30050

[15] Nachbin, L., Topology on spaces of holomorphic mappings. Springer-Verlag, Berlin-Heidelberg-New York1969. | MR 254579 | Zbl 0172.39902

[16] Nevanlinna, R., Analytic functions. Springer-Verlag, Berlin-Heidelberg-New York1970. | MR 279280 | Zbl 0199.12501

[17] Pommerenke, Ch., Univalent functions. Vandenhoeck and Ruprecht, Göttingen1975. | MR 507768 | Zbl 0298.30014

[18] Rudin, W., Function theory in the unit ball of Cn. Springer-Verlag, New York-Heidelberg-Berlin1980. | MR 601594 | Zbl 1139.32001

[19] Sarason, D., Angular derivatives via Hilbert space. Complex Variables Theory Appl., 10, 1988, 1-10. | MR 946094 | Zbl 0635.30024

[20] Wlodarczyk, K., Hyperbolic geometry in bounded symmetric homogeneous domains of J*-algebras. Atti Sem. Mat. Fis. Univ. Modena, 39, 1991, 201-211. | MR 1111769 | Zbl 0744.46035

[21] Wlodarczyk, K., Julia's lemma and Wolffs theorem for J*-algebras. Proc. Amer. Math. Soc., 99, 1987, 472-476. | MR 875383 | Zbl 0621.46041

[22] Wlodarczyk, K., Pick-Julia theorems for holomorphic maps in J*-algebras and Hilbert spaces. J. Math. Anal. Appl., 120, 1986, 567-571. | MR 864774 | Zbl 0612.46044

[23] Wlodarczyk, K., Some properties of analytic maps of operators in J*-algebras. Monatsh. Math., 96, 1983, 325-330. | MR 729044 | Zbl 0521.46046

[24] Wlodarczyk, K., Studies of iterations of holomorphic maps in J*-algebras and complex Banach spaces. Quart. J. Math. Oxford, 37, 1986, 245-256. | MR 841432 | Zbl 0595.47046

[25] Wlodarczyk, K., The angular derivative of Fréchet-holomorphic maps in J*-algebras and complex Hilbert spaces. Proc. Kon. Nederl. Akad. Wetensch., A91, 1988, 455-468; Indag. Math., 50, 1988, 455-468. | MR 976528 | Zbl 0665.46034

[26] Wlodarczyk, K., The Julia-Carathéodory theorem for distance-decreasing maps on infinite dimensional hyperbolic spaces. Rend. Mat. Acc. Lincei, s. 9, v. 4, 1993, 171-179. | MR 1250495 | Zbl 0817.46048