Some existence and multiplicity results for periodic solutions of second order nonautonomous systems with the potentials changing sign are presented. The proofs of the existence results rely on the use of a linking theorem and the Mountain Pass theorem by Ambrosetti and Rabinowitz [2]. The multiplicity results are deduced by the study of constrained critical points of minimum or Mountain Pass type.
Vengono presentati alcuni risultati di esistenza e di molteplicità per soluzioni periodiche di sistemi non autonomi del secondo ordine con potenziali che cambiano segno. Le prove dei risultati di esistenza si basano sull'uso di un teorema di «linking» e sul teorema del Passo Montano di Ambrosetti e Rabinowitz [2]. I risultati di molteplicità sono dedotti dallo studio di punti critici vincolati di tipo minimo o Passo Montano.
@article{RLIN_1993_9_4_4_273_0, author = {Mario Girardi and Michele Matzeu}, title = {Periodic Solutions of Second Order Nonautonomous Systems with the Potentials Changing Sign}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {4}, year = {1993}, pages = {273-277}, zbl = {0799.58064}, mrnumber = {1269617}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1993_9_4_4_273_0} }
Girardi, Mario; Matzeu, Michele. Periodic Solutions of Second Order Nonautonomous Systems with the Potentials Changing Sign. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993) pp. 273-277. http://gdmltest.u-ga.fr/item/RLIN_1993_9_4_4_273_0/
[1] On semilinear elliptic equations with indefinite nonlinearities. Arch. Rat. Mech. Analysis, to appear. | MR 1383913 | Zbl 0809.35022
- ,[2] Dual variational methods in critical point theory and applications. J. Funct. Anal., 14, 1973, 349-381. | MR 370183 | Zbl 0273.49063
- ,[3] Existence and multiplicity results for homogeneous second order differential equations. J. Diff. Eq., to appear. | MR 1287560 | Zbl 0808.58013
- - ,[4] Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign. Dynamical Systems and Applications, to appear. | MR 1205441 | Zbl 0771.34031
- ,[5] | MR 1051888 | Zbl 0707.70003
, Convexity methods in Hamiltonian mechanics. Springer-Verlag, 1990.[6] Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems. Invent. Math., 81, 1985, 155-188. | MR 796195 | Zbl 0594.58035
- ,[7] Some multiplicity results for suhharmonic solutions to second order nonautonomous systems. Proceedings of the First World Congress of Nonlinear Analysis. Tompe, Florida, August 19-26 1992, to appear. | MR 1389092 | Zbl 0846.34033
- ,[8] A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem. J. London Math. Soc., 31, (2), 1985, 566-570. | MR 812787 | Zbl 0573.58007
,[9] Periodic solutions of a second order superquadratic system with change of sign of potential. J. Diff. Eq., 93, 1991, 1-18. | MR 1122304 | Zbl 0736.34041
,[10] Periodic solutions of Hamiltonian systems. Comm. Pure Appl. Math., 31, 1978, 157-184. | MR 467823 | Zbl 0358.70014
,