Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems
Montecchiari, Piero
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993), p. 265-271 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove the existence of infinitely many geometrically distinct homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems.

Si dimostra l'esistenza di infinite orbite omocline geometricamente distinte per una classe di sistemi Hamiltoniani del secondo ordine asintoticamente periodici.

Publié le : 1993-12-01
@article{RLIN_1993_9_4_4_265_0,
     author = {Piero Montecchiari},
     title = {Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {4},
     year = {1993},
     pages = {265-271},
     zbl = {0802.34052},
     mrnumber = {1269616},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1993_9_4_4_265_0}
}
Montecchiari, Piero. Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993) pp. 265-271. http://gdmltest.u-ga.fr/item/RLIN_1993_9_4_4_265_0/

[1] Alama, S. - Li, Y. Y., On «Multibump» Bound States for Certain Semilinear Elliptic Equations. Research Report No. 92-NA-012. Carnegie Mellon University, 1992. | MR 1206338 | Zbl 0796.35043

[2] Ambrosetti, A., Critical points and nonlinear variational problems. Bul. Soc. Math. France, 120, 1992. | MR 1164129 | Zbl 0766.49006

[3] Coti Zelati, V. - Ekeland, I. - Séré, E., A Variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann., 288, 1990, 133-160. | MR 1070929 | Zbl 0731.34050

[4] Coti Zelati, V. - Rabinowitz, P. H., Homoclinic orbits for second order hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc., 4, 1991, 693-727. | MR 1119200 | Zbl 0744.34045

[5] Hofer, H. - Wisocki, K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann., 288, 1990, 483-503. | MR 1079873 | Zbl 0702.34039

[6] Lions, P.L., The concentration-compactness principle in the calculus of variations. Rev. Math. Iberoam., 1, 1985, 145-201. | MR 834360 | Zbl 0704.49005

[7] Montecchiari, P., Existence and multiplicity of homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems. Preprint S.I.S.S.A., 1993. | MR 1378249 | Zbl 0849.34035

[8] Rabinowitz, P. H., Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh, 1144, 1990, 33-38. | MR 1051605 | Zbl 0705.34054

[9] Séré, E., Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z., 209, 1992, 27-42. | MR 1143210 | Zbl 0725.58017

[10] Séré, E., Looking for the Bernoulli shift. Preprint CEREMADE, 1992. | MR 1249107 | Zbl 0803.58013