We prove the existence of infinitely many geometrically distinct homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems.
Si dimostra l'esistenza di infinite orbite omocline geometricamente distinte per una classe di sistemi Hamiltoniani del secondo ordine asintoticamente periodici.
@article{RLIN_1993_9_4_4_265_0, author = {Piero Montecchiari}, title = {Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {4}, year = {1993}, pages = {265-271}, zbl = {0802.34052}, mrnumber = {1269616}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1993_9_4_4_265_0} }
Montecchiari, Piero. Multiplicity of homoclinic orbits for a class of asymptotically periodic Hamiltonian systems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993) pp. 265-271. http://gdmltest.u-ga.fr/item/RLIN_1993_9_4_4_265_0/
[1] On «Multibump» Bound States for Certain Semilinear Elliptic Equations. Research Report No. 92-NA-012. Carnegie Mellon University, 1992. | MR 1206338 | Zbl 0796.35043
- ,[2] Critical points and nonlinear variational problems. Bul. Soc. Math. France, 120, 1992. | MR 1164129 | Zbl 0766.49006
,[3] A Variational approach to homoclinic orbits in Hamiltonian systems. Math. Ann., 288, 1990, 133-160. | MR 1070929 | Zbl 0731.34050
- - ,[4] Homoclinic orbits for second order hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc., 4, 1991, 693-727. | MR 1119200 | Zbl 0744.34045
- ,[5] First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems. Math. Ann., 288, 1990, 483-503. | MR 1079873 | Zbl 0702.34039
- ,[6] The concentration-compactness principle in the calculus of variations. Rev. Math. Iberoam., 1, 1985, 145-201. | MR 834360 | Zbl 0704.49005
,[7] Existence and multiplicity of homoclinic orbits for a class of asymptotically periodic second order Hamiltonian systems. Preprint S.I.S.S.A., 1993. | MR 1378249 | Zbl 0849.34035
,[8] Homoclinic orbits for a class of Hamiltonian systems. Proc. Roy. Soc. Edinburgh, 1144, 1990, 33-38. | MR 1051605 | Zbl 0705.34054
,[9] Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z., 209, 1992, 27-42. | MR 1143210 | Zbl 0725.58017
,[10] Looking for the Bernoulli shift. Preprint CEREMADE, 1992. | MR 1249107 | Zbl 0803.58013
,