Compact embedding theorems for generalized Sobolev spaces
Manfredini, Maria
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993), p. 251-263 / Harvested from Biblioteca Digitale Italiana di Matematica

In this Note we give some compact embedding theorems for Sobolev spaces, related to m-tuples of vectors fields of C1 class on RN.

In questa Nota dimostriamo alcuni teoremi di immersione compatta per spazi di Sobolev, relativi a m-uple di campi vettoriali di classe C1 su RN.

Publié le : 1993-12-01
@article{RLIN_1993_9_4_4_251_0,
     author = {Maria Manfredini},
     title = {Compact embedding theorems for generalized Sobolev spaces},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {4},
     year = {1993},
     pages = {251-263},
     zbl = {0809.46028},
     mrnumber = {1269615},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1993_9_4_4_251_0}
}
Manfredini, Maria. Compact embedding theorems for generalized Sobolev spaces. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993) pp. 251-263. http://gdmltest.u-ga.fr/item/RLIN_1993_9_4_4_251_0/

[1] Avantaggiati, A., Spazi di Sobolev con peso e alcune applicazioni. Boll. U.M.I., (5), 13-A, 1976, 1-52. | MR 423064 | Zbl 0355.46016

[2] Berger, M.S. - Schechter, M., Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains. Trans. Amer. Math. Soc., 172, 1972, 261-278. | MR 312241 | Zbl 0253.35038

[3] Coifman, R.R. - Weiss, G., Analyse harmonique non-commutative sur certain espaces homogènes. Lecture Notes in Mathematics, 242, Springer-Verlag, Berlin-New York 1971. | MR 499948 | Zbl 0224.43006

[4] Fefferman, C. - Phong, D.H., Pseudo-differential operators with positive symbols. Seminair Goulaouic-Meyer-Schwartz, 23, 1981. | Zbl 0483.35085

[5] Folland, G.B., Subelliptic estimates and function spaces on nilpotent Lie groups. Arkiv. for Math., 13, 1975, 161-207. | MR 494315 | Zbl 0312.35026

[6] Folland, G.B. - Stein, C.R., Hardy spaces of homogeneous groups. Math. Notes Princeton Univ. Press, 1982. | MR 657581 | Zbl 0508.42025

[7] Franchi, B. - Lanconelli, E., Une métrique associée à une classe d'opérateurs elliptiques dégénérés. Rend. Sem. Mat. Univ. Pol. Torino, 1983, Special Issue, 105-114. | MR 745979 | Zbl 0553.35033

[8] Franchi, B. - Lanconelli, E., An embedding theorem for Sobolev spaces related to non-smooth vector fields and Harnach inequality. Comm. in Partial Differential Equations, 9, 1984, 1237-1264. | MR 764663 | Zbl 0589.46023

[9] Franchi, B. - Serapioni, R., Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach. Ann. Scuola Norm., vol. XIV, 1987, 527-568. | MR 963489 | Zbl 0685.35046

[10] Fulton, W. - Harris, B., Representation theory: A first course. Graduate Text in Math., 129, Springer-Verlag, 1992. | MR 1153249 | Zbl 0744.22001

[11] Garofalo, N. - Lanconelli, E., Existence and nonexistence results for semilinear equations on the Heisenberg group. Ind. Univ. Math. Journ., 41, No. 1, 1992, 71-98. | MR 1160903 | Zbl 0793.35037

[12] Hermann, R., Differential geometry and the calculus of variations. Academic Press, New York-London1968. | MR 233313 | Zbl 0371.49001