Convection with temperature dependent viscosity in a porous medium: nonlinear stability and the Brinkman effect.
Richardson, Lorna ; Straughan, Brian
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993), p. 223-230 / Harvested from Biblioteca Digitale Italiana di Matematica

We establish a nonlinear energy stability theory for the problem of convection in a porous medium when the viscosity depends on the temperature. This is, in fact, the situation which is true in real life and has many applications to geophysics. The nonlinear analysis presented here would appear to require the presence of a Brinkman term in the momentum equation, rather than just the normal form of Darcy's law.

Si considera il problema della convezione naturale in un mezzo poroso tenendo conto - com'è nella realtà geofìsica - delle variazioni della viscosità con la temperatura. Si stabiliscono condizioni che assicurano la stabilità non lineare nella norma di L2 (stabilità in energia) nell'ambito del modello di Brinkman.

Publié le : 1993-09-01
@article{RLIN_1993_9_4_3_223_0,
     author = {Lorna Richardson and Brian Straughan},
     title = {Convection with temperature dependent viscosity in a porous medium: nonlinear stability and the Brinkman effect.},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {4},
     year = {1993},
     pages = {223-230},
     zbl = {0801.76035},
     mrnumber = {1250502},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1993_9_4_3_223_0}
}
Richardson, Lorna; Straughan, Brian. Convection with temperature dependent viscosity in a porous medium: nonlinear stability and the Brinkman effect.. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993) pp. 223-230. http://gdmltest.u-ga.fr/item/RLIN_1993_9_4_3_223_0/

[1] Brinkman, H. C., A calculation of the viscous forces exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., A1, 1947, 27-34. | Zbl 0041.54204

[2] Hsu, C. T. - Cheng, P., The Brinkman model for natural convection about a semi-infinite vertical flat plate in a porous medium. Int. J. Heat Mass Transfer, 28, 1985, 683-697. | Zbl 0576.76079

[3] Katto, Y. - Masuoka, T., Criteria for the onset of convective flow in a fluid in a porous medium. Int. J. Heat Mass Transfer, 10, 1967, 297-309.

[4] Mulone, G. - Rionero, S., On the nonlinear stability of the magnetic Bénard problem with rotation. ZAMM, 72, 1992, in press. | MR 1291193 | Zbl 0798.76028

[5] Nield, D. A., The boundary correction for the Rayleigh-Darcy problem: limitations of the Brinkman equation. J. Fluid Mech., 128, 1983, 37-46. | MR 704274 | Zbl 0512.76101

[6] Nield, D. A. - Bejan, A., Convection in Porous Media. Springer-Verlag, New York 1992. | MR 1656781 | Zbl 0924.76001

[7] Or, A. C., The effects of temperature-dependent viscosity and the instabilities in the convection rolls of a layer of fluid-saturated porous medium. J. Fluid Mech., 206, 1989, 497-515. | MR 1016917 | Zbl 0679.76099

[8] Qin, Y. - Kaloni, P. N., Steady convection in a porous medium based upon the Brinkman model. IMA J. Appl. Math., 35, 1992, 85-95. | MR 1150892 | Zbl 0765.76085

[9] Qin, Y. - Kaloni, P. N., Nonlinear stability problem of a rotating porous layer. Quart. Appl. Math., to appear. | MR 1315452 | Zbl 0816.76035

[10] Qin, Y. - Kaloni, P. N., Convective instabilities in anisotropic porous media. Stud. Appl. Math., to appear. | MR 1274241 | Zbl 0792.76027

[11] Richardson, L. - Straughan, B., A nonlinear energy stability analysis of convection with temperature dependent viscosity. Acta Mech., 97, 1993, 41-49. | Zbl 0761.76024

[12] Rionero, S., Sulla stabilità asintotica in media in magnetoidrodinamica. Ann. Mat. Pura Appl., 76, 1967, 75-92. | MR 220478 | Zbl 0158.45104

[13] Rionero, S., Metodi variazionali per la stabilità asintotica in media in magnetoidrodinamica. Ann. Mat. Pura Appl., 78, 1968, 339-364. | MR 229424 | Zbl 0182.29402

[14] Rudraiah, N. - Masuoka, T., Asymptotic analysis of natural convection through a horizontal porous layer. Int. J. Engng. Sci., 20, 1982, 27-40. | Zbl 0484.76103

[15] Straughan, B., The Energy Method, Stability, and Nonlinear Convection. Springer-Verlag, Ser. in Appl. Math. Sci., vol. 91, 1992. | MR 1140924 | Zbl 0743.76006

[16] Tippelskirch, H., Über Konvektionszellen, insbesondere im flüssigen Schwefel. Beit. zur Physik der Atmosphäre, 29, 1956, 37-54.

[17] Vafai, K. - Kim, S. J., Forced convection in a channel filled with a porous medium: an exact solution. Trans. ASME J. Heat Transfer, 112, 1989, 1103-1106.

[18] Vafai, K. - Tien, C. L., Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transfer, 24, 1981, 195-203. | Zbl 0464.76073

[19] Walker, K. - Homsy, G. M., A note on convective instability in Boussinesq fluids and porous media. J. Heat Transfer, 99, 1977, 338-339.

[20] Weast, R. C., Handbook of Chemistry and Physics. 69th ed. C.R.C. Press, Inc., Boca Raton, Florida, 1988.