Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate
Saccon, Claudio
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993), p. 185-195 / Harvested from Biblioteca Digitale Italiana di Matematica

Si studiano problemi di autovalori per disequazioni variazionali semilineari ellittiche con un ostacolo puntuale sulla derivata prima della funzione incognita. Si mette in particolare in evidenza il ruolo della «ipotesi di non tangenza» tra il convesso, che viene definito dalla condizione di ostacolo, e la sfera dello spazio funzionale, su cui è naturale studiare un problema di autovalori. Tale condizione viene analizzata in alcuni casi concreti e si indicano alcune ipotesi che, garantendone la validità, danno luogo ad alcuni risultati di esistenza e molteplicità.

Some eigenvalue problems for elliptic semilinear variational inequalities are studied, the main feature being the presence of an obstacle on the first derivative of the unknown function. The role of a «nontangency» assumption is put into evidence: to have existence and multiplicity results one has to check that the convex set, produced by the obstacle condition, and the sphere in the function space, on which it seems natural to study eigenvalue problems, are not tangent. This condition is studied in some problems of the fourth and of the second order and some sufficient conditions for it are found, which allow to get results of existence and multiplicity.

Publié le : 1993-09-01
@article{RLIN_1993_9_4_3_185_0,
     author = {Claudio Saccon},
     title = {Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {4},
     year = {1993},
     pages = {185-195},
     zbl = {0801.49013},
     mrnumber = {1250497},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RLIN_1993_9_4_3_185_0}
}
Saccon, Claudio. Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993) pp. 185-195. http://gdmltest.u-ga.fr/item/RLIN_1993_9_4_3_185_0/

[1] Berger, M. S., Nonlinearity and Funtional Analysis. Academic Press, New York-San Francisco-London1977. | MR 488101 | Zbl 0368.47001

[2] Cobanov, G. - Marino, A. - Scolozzi, D., Multiplicity of eigenvalues of the Laplace operator with respect to an obstacle and non tangency conditions. Nonlinear Anal. Th. Meth. Appl., vol. 15, 3, 1990, 199-215. | MR 1065252 | Zbl 0716.49009

[3] Cobanov, G. - Marino, A. - Scolozzi, D., Evolution equations for the eigenvalue problem for the Laplace operator with respect to an obstacle. Rend. Accad. Naz. Sci. XL, Mem. Mat., 14, 1990, 139-162. | MR 1106575 | Zbl 0729.35088

[4] De Giorgi, E. - Marino, A. - Tosques, M., Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Lincei Rend. fis., s. 8, vol. 68, 1980, 180-187. | MR 636814 | Zbl 0465.47041

[5] Degiovanni, M., Bifurcation problems for nonlinear elliptic variational inequalities. Ann. Fac. Sci. Toulouse, 10, 1989, 215-258. | MR 1425487 | Zbl 0656.58030

[6] Degiovanni, M., Homotopical properties of a class of nonsmooth functions. Ann. Mat. Pura e Applicata, vol. CLVI, 1990, 37-71. | MR 1080210 | Zbl 0722.58013

[7] Degiovanni, M. - Marino, A., Nonsmooth variational bifurcation. Atti Acc. Lincei Rend. fis., s. 8, vol. 81, 1987, 259-269. | MR 999818 | Zbl 0671.58029

[8] Degiovanni, M. - Marino, A. - Tosques, M., Evolution equations with lack of convexity. Nonlinear Anal. Th. Meth. Appl., (9), 12, 1985, 1401-1443. | MR 820649 | Zbl 0545.46029

[9] Do, C., Bifurcation theory for elastic plates subjected to unilateral conditions. J. Math. Anal. Appl., 60, 1977, 435-448. | MR 455672 | Zbl 0364.73030

[10] Krasnoselskii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow1956. The Macmillan Co., New York1964. | MR 159197

[11] Kučera, M., A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues. Czechoslovak Math. J., 32, 1982, 197-207. | MR 654056 | Zbl 0621.49005

[12] Kučera, M., Bifurcation point of variational inequalities. Czechoslovak Math. J., 32, 1982, 208-226. | MR 654057 | Zbl 0621.49006

[13] Kučera, M., A global bifurcation theorem for obtaining eigenvalues and bifurcation points. Czechoslovak Math. J., 38, 1988, 120-137. | MR 925946 | Zbl 0665.35010

[14] Kučera, M. - Nečas, J. - Souček, J., The eigenvalue problem for variational inequalities and a new version of the Lustemik-Schnirelmann theory. In: Nonlinear Analysis. Collection of papers in honour Erich H. Rothe. Academic Press, New York 1978, 125-143. | MR 513782 | Zbl 0463.47041

[15] Marino, A. - Saccon, C. - Tosques, M., Curves of maximal slope and parabolic variational inequalities on non convex constraints. Annali Sc. Norm. Sup. Pisa, vol. XVI, 1989, 281- 330. | MR 1041899 | Zbl 0699.49015

[16] Marino, A. - Scolozzi, D., Geodetiche con ostacolo. Boll. Un. Mat. Ital., B (6) 2, 1983, 1-31. | MR 698480

[17] Marino, A. - Tosques, M., Some variational problems with lack of convexity and some partial differential inequalities. In: Methods of Nonconvex Analysis. Lecture notes in math., 1446, Springer-Verlag, 1989, 58-83. | MR 1079759 | Zbl 0716.49010

[18] Miersemann, E., Eigenwertaufgaben für Variationsungleichungen. Math. Nachr., 100, 1981, 221-228. | MR 632628 | Zbl 0474.49011

[19] Miersemann, E., On higher eigenvalues of variational inequalities. Comment. Math. Univ. Carolin., 24, 1983, 657-665. | MR 738561 | Zbl 0638.49020

[20] Miersemann, E., Eigenvalue problems in convex sets. Mathematical Control Theory: 401-408, Banach Center Pubbl., 14PWN, Warsaw1985. | MR 851239

[21] Quittner, P., Spectral analysis of variational inequalities. Comment. Math. Univ. Carolin., 27, 1986, 605-629. | MR 873631 | Zbl 0652.49008

[22] Rabinowitz, P. H., Variational methods for nonlinear eigenvalue problems. C.I.M.E., Varenna 1974, 1-56. | MR 464299 | Zbl 0278.35040

[23] Riddel, R. C., Eigenvalue problems for nonlinear elliptic variational inequalities. Nonlinear Anal. Th. Meth. Appl., 31979, 1-33. | Zbl 0416.49009

[24] Saccon, C., Some parabolic equations on nonconvex constraints. Boll. Un. Mat. Ital., B (7) 3, 1989, 369-385. | MR 998002 | Zbl 0716.35035

[25] Saccon, C., On the eigenvalues of a fourth order elliptic variational inequality with pointwise gradient constraint. Preprint Dip. Mat. Pisa, ottobre 1992.

[26] Schuricht, F., Minimax principle for eigenvalue variational inequalities in the nonsmooth case. Math. Nachr., 152, 1991, 121-143. | MR 1121229 | Zbl 0745.49012

[27] Schuricht, F., Bifurcation from minimax solutions by variational inequalities. Math. Nachr., 154, 1991, 67-88. | MR 1138371 | Zbl 0762.49019

[28] Szulkin, A., On a class of variational inequalities involving gradient operators. J. Math. Annal. Appl., 100, 1984, 486-499. | MR 743337 | Zbl 0551.49008

[29] Szulkin, A., On the solvability of a class of semilinear variational inequalities. Rend. Mat., (7) 4, 1984, 121-137. | MR 807126 | Zbl 0608.35003

[30] Szulkin, A., Posive solutions of variational inequalities: a degree theoretical approach. J. Differential Equations, 57, 1985, 90-111. | MR 788424 | Zbl 0535.35029