Si considera un corpo indefinito in deformazione piana con una fessura semiinfinita al cui apice è localizzata una zona plastica. Se i carichi crescono monotonamente in forma quasi statica, si determina la velocità di avanzamento dell'apice della fessura. Il risultato è esteso, sotto opportune ipotesi, a variazioni di carico cicliche. Ciò permette di trovare una relazione fra l'incremento di lunghezza della fessura e l'oscillazione del fattore di concentrazione degli sforzi, giustificando così la legge di Paris.
It is considered an indefinite body under plane strain with a semiinfinite crack. A plastic region is localized around the crack tip. If loads increase in a monotonous and quasi-static way, it is possible to calculate the crack growth rate. The results so obtained are extended wisely to cyclic loading. That allows to find a relationship between the increase of the crack length and the variation range of the strength intensity factor, so that the Paris' law is justified.
@article{RLIN_1993_9_4_2_145_0, author = {Adolfo Bacci}, title = {Un modello semplice per giustificare la legge di Paris}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {4}, year = {1993}, pages = {145-155}, zbl = {0773.73067}, mrnumber = {1233402}, language = {it}, url = {http://dml.mathdoc.fr/item/RLIN_1993_9_4_2_145_0} }
Bacci, Adolfo. Un modello semplice per giustificare la legge di Paris. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993) pp. 145-155. http://gdmltest.u-ga.fr/item/RLIN_1993_9_4_2_145_0/
[1] A critical analysis of crack propagation laws. Journ. Basic. Eng., Trans. ASME, vol. 85, 1963, 528-534.
- ,[2] Sub-critical flaw growth. Eng. Fract. Mech., vol. 1, 1968, 3-45.
- ,[3] A note on models of fatigue crack growth. Lehigh Univ. Inst. Res. Rep., 1964.
,[4] A criterion for low-stress brittle fracture of materials with crack or sharp notch based on combined micro-and-macro fracture mechanics. Eng. Fract. Mech., vol. 5, 1973, 819-836.
- ,[5] On quasi brittle fracture. PMM, vol. 32, 1968, 1050-1058. | Zbl 0194.57402
,[6] Cracks in solids. Int. Journ. Solids Struct., vol. 4, 1968, 811-831. | Zbl 0159.26703
,[7] Slow growth of cracks in a rate sensitive Tresca solid. Eng. Fract. Mech., vol. 5, 1973, 605-625.
,[8] A theory for stable crack extension rates in ductile materials. Int. Journ. Solids Struct., vol. 16, 1980, 807-823. | MR 581418 | Zbl 0474.73115
,[9] On the theory of fatigue crack growth. Eng. Fract. Mech., vol. 4, 1972, 219-230.
- ,[10] Energy considerations in fatigue crack propagation. Int. Journ. Fract., vol. 17, 1981, 15-25.
et al.,[11] The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. Lond., fasc. 221, 1921, 163-198.
,[12] Fracture. In: Handbuch der Physik. Vol. VI, Springer-Verlag, Berlin1958, 551-590. | MR 94946
,[13] Analysis of stresses and strains near the end of a crack traversing a plate. Journ. Appl. Mech., Trans. ASME, vol. 24, 1957, 361-364.
,[14] | MR 684071 | Zbl 0569.73100
, The Mechanics of Fracture and Fatigue. Spon, London1981.[15] Mechanics of crack tip deformation and extension by fatigue. ASTM STP415, 1967, 247-309.
,[16] Plastic rupture lines at the tip of a crack. PMM, vol. 40, 1976, 666-674. | MR 502522 | Zbl 0366.73089
,[17] | Zbl 0527.73021
- , Elastic-Plastic Problems. ASME PRESS, New York 1988.[18] | MR 58417 | Zbl 0052.41402
, Some basic problems of the mathematical theory of elasticity. Noordhoff, Groningen1953.[19] | Zbl 0521.33001
- , Table of Integrals, Series, and Products. Academic Press, New York 1965.