Foliations with complex leaves
Gigante, Giuliana ; Tomassini, Giuseppe
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993), p. 115-120 / Harvested from Biblioteca Digitale Italiana di Matematica

Let X be a smooth foliation with complex leaves and let D be the sheaf of germs of smooth functions, holomorphic along the leaves. We study the ringed space X,D. In particular we concentrate on the following two themes: function theory for the algebra DX and cohomology with values in D.

Sia X una varietà differenziabile fogliata con foglie complesse e sia D il fascio dei germi delle funzioni differenziabili su X, olomorfe lungo le foglie. Si studia lo spazio anellato X,D; in particolare la teoria delle funzioni per l'algebra DX e la coomologia a valori in D.

Publié le : 1993-06-01
@article{RLIN_1993_9_4_2_115_0,
     author = {Giuliana Gigante and Giuseppe Tomassini},
     title = {Foliations with complex leaves},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {4},
     year = {1993},
     pages = {115-120},
     zbl = {0784.32027},
     mrnumber = {1233399},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1993_9_4_2_115_0}
}
Gigante, Giuliana; Tomassini, Giuseppe. Foliations with complex leaves. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993) pp. 115-120. http://gdmltest.u-ga.fr/item/RLIN_1993_9_4_2_115_0/

[1] Andreotti, A. - Grauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes. Bull. Soc. Math. France, 90, 1962, 193-259. | MR 150342 | Zbl 0106.05501

[2] Andreotti, A. - Nacinovich, M., Analytic Convexity. Ann. Scuola Norm. Sup. Pisa, 7, 1980, 287-372. | MR 581145 | Zbl 0435.35039

[3] Chaumat, J. - Chollet, A. M., Noyaux pour résoudre l'équation ¯ dans des classes ultradifférentiables sur des compacts irréguliers de Cn. Preprint.

[4] Freeman, M., Local complex foliations of real submanifolds. Math. Ann., 209, 1970, 1-30. | MR 346185 | Zbl 0267.32006

[5] Freeman, M., Tangential Cauchy-Riemann equations and uniform approximation. Pacific J. Math., 33, N. 1, 1970, 101-108. | MR 264117 | Zbl 0184.31103

[6] Gay, R. - Sebbar, A., Division et extension dans l'algèbre AΩ d'un ouvert pseudo-convex à bord lisse de Cn. Math. Z., 189, 1985, 421-447. | MR 783566 | Zbl 0547.32009

[7] Hörmander, L., An Introduction to Complex Analysis in Several Variables. North-Holland1973. | MR 1045639 | Zbl 0271.32001

[8] Kobayashi, S., Intrinsic distances, measures and geometric function theory. Bull. Am. Math. Soc., 82, 1976, 357-416. | MR 414940 | Zbl 0346.32031

[9] Kohn, J. J., Global regularity for ¯ on weakly pseudoconvex manifolds. Trans. Amer. Math. Soc., 181, 1973, 273-292. | MR 344703 | Zbl 0276.35071

[10] Nirenberg, L., A Proof of the Malgrange Preparation Theorem. Proceedings of Liverpool Singularities, I. Lecture notes in mathematics, 192, Springer-Verlag, New York1971, 97-105. | MR 412460 | Zbl 0212.10702

[11] Rea, C., Levi flat submanifolds and biholomorphic extension of foliations. Ann. Scuola Norm. Sup. Pisa, 26, 1972, 664-681. | MR 425158 | Zbl 0272.57013

[12] Sibony, N., A class of hyperbolic manifolds. Recent developments in several complex variables. Ann. of Math. Stud., Princeton Univ. Press, N. 100, 1981. | MR 627768 | Zbl 0476.32033

[13] Sommer, F., Komplexe analytische Blätterung reeler Mannigfaltigkeiten in Cn. Math. Ann., 136, 1958, 111-133. | MR 101924 | Zbl 0092.29902

[14] Tomassini, G., Extension d'objects CR. Math. Z., 194, 1987, 471-486. | MR 881705 | Zbl 0629.32015