We consider the operator on a complex Hilbert space, where is positive self-adjoint and is self-adjoint, and where, moreover, « is comparable to , », in a technical sense. Two applications are given.
Si considera l'operatore in uno spazio di Hilbert complesso, dove è autoaggiunto positivo e è autoaggiunto, con « comparabile con , ». Vengono date due applicazioni.
@article{RLIN_1993_9_4_1_29_0, author = {Angelo Favini and Roberto Triggiani}, title = {New classes of analytic and Gevrey semigroups and applications}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {4}, year = {1993}, pages = {29-34}, zbl = {0805.47033}, mrnumber = {1225884}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1993_9_4_1_29_0} }
Favini, Angelo; Triggiani, Roberto. New classes of analytic and Gevrey semigroups and applications. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 4 (1993) pp. 29-34. http://gdmltest.u-ga.fr/item/RLIN_1993_9_4_1_29_0/
[1] Proof of two conjectures by G. Chen and D. L. Russell on structural damping for elastic systems. Proceedings of Conference on Approximation and Optimization held at the University of Havana (Cuba, January 1987). Lecture notes in mathematics, n. 1354, Springer-Verlag, 1988, 234-256. | MR 996678 | Zbl 0669.34015
- ,[2] Multivalued linear operator and degenerate evolution equations. Ann. Mat. Pura Appl., to appear. | MR 1219605 | Zbl 0786.47037
- ,[3] Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bemoulli equations. Ann. Mat. Pura Appl., vol. 153, 1988, 307-382. | MR 1008349 | Zbl 0674.49004
- - ,[4] | MR 203473 | Zbl 0836.47009
, Perturbation theory for linear operators. Springer-Verlag, 1966.[5] 29, 1971. | MR 342804 | Zbl 0229.34050
, Linear differential equations in Banach space. Translations of Math. Monographs, American Math. Soc., vol.[6] Riccati equations arising from systems with unbounded input-solution operator: applications to boundary control problems for wave and plate problems. J. of Nonlinear Analysis, to appear. | Zbl 0798.49007
- ,[7] | MR 710486 | Zbl 0516.47023
, Semigroups of operators and applications to partial differential equations. Springer-Verlag, New York1983.[8] The theory of semigroups with weak singularity and its applications to partial differential equations. Tsakuba J. Math., 13, 1989, 513-562. | MR 1030233 | Zbl 0695.47031
,[9] Gevrey class semigroups. Ph. D. thesis, School of Mathematics, University of Minnesota, 1989, Chapter 1.
,