General construction of Banach-Grassmann algebras
Pestov, Vladimir G.
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992), p. 223-231 / Harvested from Biblioteca Digitale Italiana di Matematica

We show that a free graded commutative Banach algebra over a (purely odd) Banach space E is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if E is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.

Si mostra che un'algebra di Banach libera graduato-commutativa su uno spazio di Banach E puramente dispari è un'algebra di BanachGrassmann nel senso di Jadczyk e Pilch se e solo se E ha dimensione infinita. É quindi possibile ottenere un gran numero di nuovi esempi di algebre di Banach-Grassmann separabili, in aggiunta all'unico esempio precedentemente noto, dovuto ad A. Rogers.

Publié le : 1992-09-01
@article{RLIN_1992_9_3_3_223_0,
     author = {Vladimir G. Pestov},
     title = {General construction of Banach-Grassmann algebras},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {3},
     year = {1992},
     pages = {223-231},
     zbl = {0745.46050},
     mrnumber = {1186918},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1992_9_3_3_223_0}
}
Pestov, Vladimir G. General construction of Banach-Grassmann algebras. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992) pp. 223-231. http://gdmltest.u-ga.fr/item/RLIN_1992_9_3_3_223_0/

[1] Bartocci, C. - Bruzzo, U. - Hernández Ruipérez, D., The geometry of supermanifolds. Kluwer Academic Publishers Group, Dordrecht 1991. | MR 1175751 | Zbl 0743.53001

[2] Kobayashi, Y. - Nagamachi, Sh., Usage of infinite-dimensional nuclear algebras in superanalysis. Lett. Math. Phys., 14, 1987, 15-23. | MR 901695 | Zbl 0638.46054

[3] Vladimirov, V. S. - Volovich, I. V., Superanalysis I. Differential calculus. Theor. Math. Phys., 60, 1984, 317-335. | MR 749002 | Zbl 0552.46023

[4] A. YuKhrennikov, , Functional superanalysis. Russian Math. Surveys, 43, 1988, 103-137. | MR 940661 | Zbl 0665.46031

[5] Bryant, P., DeWitt supermanifolds and infinite-dimensional ground rings. J. London Math. Soc., 39, 1989, 347-368. | MR 991667 | Zbl 0636.58011

[6] Choquet, Y., Graded Bundles and Supermanifolds. Monographs and Textbooks in Physical Sciences, Bibliopolis, Naples1990. | MR 1026098 | Zbl 0707.58006

[7] De Witt, B. S., Supermanifolds. Cambridge University Press, London1984. | MR 778559 | Zbl 0623.53042

[8] Berezin, F. A., Introduction to superanalysis. D. Reidel Publ. Co., Dordrecht-Boston, MA, 1987. | MR 914369 | Zbl 0659.58001

[9] Arens, R., A generalization of normed rings. Pacif. J. Math., 2, 1952, 455-471. | MR 51445 | Zbl 0047.35802

[10] Michael, E., Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 1952, 79 pp. | MR 51444 | Zbl 0047.35502

[11] Pestov, V., Even sectors of Lie superalgebras as locally convex Lie algebras. J. Math. Phys., 32, 1991, 24-32. | MR 1083081 | Zbl 0693.17015

[12] Pestov, V., Interpreting superanalyticity in terms of convergent series. Class. Quantum Grav., 6, 1989, L145-L159. | MR 1005646 | Zbl 0676.58015

[13] Pestov, V., Ground algebras for superanalysis. Rep. Math. Phys., 1991, to appear. | MR 1179836 | Zbl 0681.15014

[14] Jadczyk, A. - Pilch, K., Superspaces and supersymmetries. Commun. Math. Phys., 78, 1981, 373-390. | MR 603500 | Zbl 0464.58006

[15] Bruzzo, U. - Cianci, R., On the structure of superfields in a field theory on a supermanifold. Lett. Math. Phys., 11, 1986, 21-26. | MR 824672 | Zbl 0587.58013

[16] Bruzzo, U., Geometry of rigid supersymmetry. Hadronic J., 9, 1986, 25-30. | MR 859469 | Zbl 0593.53056

[17] Rogers, A., A global theory of supermanifolds. J. Math. Phys., 21, 1980, 1352-1365. | MR 574696 | Zbl 0447.58003

[18] Teofilatto, P., Enlargeable graded Lie algebras of supersymmetry. J. Math. Phys., 28, 1987, 991-996. | MR 887013 | Zbl 0636.17009

[19] Jadczyk, A. - Pilch, K., Classical limit of CAR and self-duality in the infinite-dimensional Grassmann algebra. In: B. Jancewicz - J. Lukierski, Quantum Theory of Particles and Fields. World Scientific, Singapore 1983. | MR 772783

[20] Lindenstrauss, J. - Tzafriri, K., Classical Banach Spaces. Vol. 1, Springer Verlag, Berlin-Heidelberg-New York 1977. | Zbl 0362.46013

[21] Schaefer, H. H., Topological Vector Spaces. The Macmillan Co., New York-London1966. | MR 193469 | Zbl 0217.16002

[22] Khelemskii, A. Ya., Banach and Polynormed Algebras. General Theory, Representations, Homology. Nauka, Moscow1989 (in Russian). | MR 1031991 | Zbl 0688.46025

[23] Manin, Yu. I., Gauge field theory and complex geometry. Springer Verlag, Berlin1988. | MR 954833 | Zbl 0641.53001

[24] Cartan, H., Formes Différentielles. Hermann, Paris1967. | MR 231303 | Zbl 0184.12701

[25] Kupsch, J., Measures for fermionic integration. Fortschr. Phys., 35, 1987, 415-436. | MR 899880

[26] Ivashchuk, V. D., On annihilators in infinite-dimensional Grassmann-Banach algebras. Teor. i mat. fizika, 79, 1989, 30-40 (in Russian). | MR 1000941 | Zbl 0677.58009

[27] Arkhangel'Skii, A. V., Classes of topological groups. Russian Math. Surveys, 36, 1981, 151-174. | MR 622722 | Zbl 0488.22001

[28] Berezin, F. A., The Method of Second Quantization. Academic Press, New York1966. | MR 208930 | Zbl 0151.44001