Some properties of collision and non-collision orbits for a class of singular dynamical systems
Coti Zelati, Vittorio ; Serra, Enrico
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992), p. 217-222 / Harvested from Biblioteca Digitale Italiana di Matematica

We present some regularity properties of periodic solutions to a class of singular potential problems and we discuss the existence of a regular solution.

Si presentano alcune proprietà di regolarità delle soluzioni periodiche di una classe di sistemi dinamici con potenziale singolare e si prova l'esistenza di una soluzione regolare.

Publié le : 1992-09-01
@article{RLIN_1992_9_3_3_217_0,
     author = {Vittorio Coti Zelati and Enrico Serra},
     title = {Some properties of collision and non-collision orbits for a class of singular dynamical systems},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {3},
     year = {1992},
     pages = {217-222},
     zbl = {0768.34024},
     mrnumber = {1186917},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1992_9_3_3_217_0}
}
Coti Zelati, Vittorio; Serra, Enrico. Some properties of collision and non-collision orbits for a class of singular dynamical systems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992) pp. 217-222. http://gdmltest.u-ga.fr/item/RLIN_1992_9_3_3_217_0/

[1] Ambrosetti, A. - Coti Zelati, V., Perturbations of Hamiltonian systems with Keplerian potentials. Math. Z., 201, 1989, 227-242. | MR 997224 | Zbl 0653.34032

[2] Bahri, A. - Lions, P. L., Morse index of some min-max critical points. I. Application to multiplicity results. Comm. Pure Appl. Math., 41, 1988, 1027-1037. | MR 968487 | Zbl 0645.58013

[3] Bahri, A. - Rabinowitz, P. H., A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal., 82, 1989, 412-428. | MR 987301 | Zbl 0681.70018

[4] Coti Zelati, V., Periodic solutions for a class of planar, singular dynamical systems. J. Math. Pures Appl., (9) 68, 1989, 109-119. | MR 985956 | Zbl 0633.34034

[5] Coti Zelati, V. - Serra, E., Collision and non collision solutions for a class of Keplerian like dynamical Systems. Preprint SISSA (Trieste), 1991. | MR 1313812 | Zbl 0832.70009

[6] Degiovanni, M. - Giannoni, F., Periodic solutions of dynamical systems with Newtonian-type potentials. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 1989, 467-494. | MR 1015804 | Zbl 0692.34050

[7] Serra, E. - Terracini, S., Noncollision solutions to some singular minimization problems with Keplerian-like potentials. Nonlinear Anal. TMA, to appear. | MR 1256169 | Zbl 0813.70006

[8] Solimini, S., Morse index estimates in min-max theorems. Manuscripta Math., 63, 1989, 421-453. | MR 991264 | Zbl 0685.58010

[9] Tanaka, K., Morse index at critical points related to the symmetric mountain pass theorem and applications. Commun. in Partial Diff. Eq., 14, 1989, 119-128. | MR 973271 | Zbl 0669.34035

[10] Tanaka, K., Non-collisions for a second order singular Hamiltonian system with weak force. Preprint, Nagoya University, Japan, 1991. | MR 1220034

[11] Terracini, S., An homotopical index and multeplicity of periodic solutions to dynamical systems with singular potentials. J. Diff. Eq., to appear. | MR 1170468 | Zbl 0774.34028

[12] Viterbo, C., Indice de Morse des points critiques obtenus par minimax. Ann. Inst. H. Poincaré, Analyse non linéaire, 3, 1988, 221-225. | MR 954472 | Zbl 0695.58007