Teoria degli operatori intermedi e applicazioni: risultati generali
Lanzara, Flavia
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992), p. 79-101 / Harvested from Biblioteca Digitale Italiana di Matematica

Mediante l'uso della teoria dei problemi intermedi vengono dati metodi di calcolo per gli operatori di Green e per le relative funzioni di Green di problemi del tipo: data fS, determinare uH tale che Tu,vH=f,vS, vH, dove S ed H sono spazi di Hilbert, HS, T è un operatore lineare da H in H che verifica opportune ipotesi. Si ottengono maggiorazioni esplicite «a priori», tanto prossime a quella ottimale quanto si vuole.

Problems of the following kind are considered: Tu,vH=f,vS, fS, uH, vH, vector f is given, vector u is the «unknown». H is a subspace of the Hilbert space S. T is a linear operator from H to H which satisfies suitable hypotheses. By using the theory of intermediate operators methods for the calculus of the «Green operators» and of the relevant «Green functions» are given. Explicit «a priori» estimates are obtained which are as close as we wish to the optimal ones.

Publié le : 1992-06-01
@article{RLIN_1992_9_3_2_79_0,
     author = {Flavia Lanzara},
     title = {Teoria degli operatori intermedi e applicazioni: risultati generali},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {3},
     year = {1992},
     pages = {79-101},
     zbl = {0777.47012},
     mrnumber = {1170206},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RLIN_1992_9_3_2_79_0}
}
Lanzara, Flavia. Teoria degli operatori intermedi e applicazioni: risultati generali. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992) pp. 79-101. http://gdmltest.u-ga.fr/item/RLIN_1992_9_3_2_79_0/

[1] Weinstein, A., Études des spectres des équations aux dérivées partielles de la théorie des plaques élastiques. Memor. Sci. Math., vol. 88, Paris1937. | JFM 63.1324.01

[2] Weinstein, A. - Stenger, W., Methods of Intermediate Problems for Eigenvalues. Academic Press, New York-London 1972. | MR 477971 | Zbl 0291.49034

[3] Aronszajn, N., The Rayleigh-Ritz and A. Weinstein Methods for Approximation of Eigenvalues. I. Operators in a Hilbert Space. II. Differential Operators. Proc. Nat. Acad. Sci., USA, vol. 34, 1948, 474-480, 594-601. | MR 27955 | Zbl 0031.40601

[4] Aronszajn, N., Approximation Methods for Eigenvalues of Completely Continuous Symmetric Operators. Proc. Symp. Spectral Theory and Differential Problems, Stillwater, Oklahoma1951, 179-202. | MR 44736 | Zbl 0067.09101

[5] Bazley, N., Lower bounds for eigenvalues with application to the helium atom. Proc. Nat. Acad. Sci., USA, vol. 45, 1959, 850-853. | MR 2612995 | Zbl 0087.43004

[6] Bazley, N., Lower bounds for eigenvalues with application to the helium atom. Phys. Rev., 129, 1960, 144-149. | MR 116989 | Zbl 0093.44501

[7] Bazley, N., Lower bounds for eigenvalues. J. Math. Mech., 10, 1961, 289-308. | MR 128612 | Zbl 0106.31802

[8] Kuroda, S. T., On a generalization of the Weinstein-Aronszajn formula and the infinite determinant. Sci. Papers College Gen. Educ. Univ. Tokio, vol. 11, 1961, 1-12. | MR 138008 | Zbl 0099.10003

[9] Fichera, G., Linear Elliptic Differential Systems and Eigenvalue Problems. Lecture notes in mathematics, vol. 8, Springer Verlag, Berlin-Heidelberg-New York1965. | MR 209639 | Zbl 0138.36104

[10] Stenger, W., On Fichera's transformation in the method of intermediate problems. Atti Acc. Lincei Rend. fis., s. 8, vol. 48, fasc. 3, 1970, 302-305. | MR 275222 | Zbl 0199.47303

[11] Stenger, W., Intermediate Problems for Eigenvalues. Int. J. of Quantum Chemistry, vol. 8, 1974, 623-625.

[12] Fichera, G. - Sneider, M. A., Abstract and Numerical Aspects of the Problems Concerning the Computation of Eigenfrequencies of Continuous Systems. Trends in Appl. of Pure Math. to Mech., Pitman Publ., 1976, 63-89. | MR 483901 | Zbl 0355.65049

[13] Gilbert, R. - Newton, G., Analytic Methods in Mathematical Physics. Gordon & Breach, New York-London 1968. | MR 327404 | Zbl 0194.29903

[14] Mikhlin, S. G., Variazionie metodi v Mathematischgeskoî Physike. Phys.-Math. Lit., Moscow1970.

[15] Weinberger, H. F., Variational Methods for Eigenvalue Approximation. Regional Conference Series in Appl. Math., 15, SIAM, Philadelphia1974. | MR 400004 | Zbl 0296.49033

[16] Fichera, G., Numerical and Quantitative Analysis. Pitman Pubi. Ltd., London-San Francisco-Melbourne 1978. | MR 519677 | Zbl 0384.65043

[17] Fichera, G., Abstract and Numerical Aspects of Eigenvalue Theory. Lecture Notes, Univ. Alberta, Edmonton, Canada1973.

[18] Fichera, G., The Neumann Eigenvalue Problem. Applicable Analysis, Gordon and Breach Science Publ. Ltd., vol. 3, 1973, 213-240. | MR 399672 | Zbl 0298.35044

[19] Fichera, G., Lezioni sulle trasformazioni lineari. Ist. Mat., Univ. Trieste, ed. Veschi, Trieste1954. | MR 67346 | Zbl 0057.33601

[20] Weyl, W., Das asymptotische Verteilunggesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Holraumstrahlung). Math. Ann., 71, 1911, 441-479. | JFM 43.0436.01

[21] Fichera, G., Upper bounds for orthogonal invariants of some positive linear operators. Rend. Ist. Mat. Trieste, vol. I, fasc. I, 1969, 1-8. | MR 259654 | Zbl 0187.38102