In this Note we prove the existence of infinitely many periodic solutions of prescribed period for a Hamiltonian system with a singular potential.
In questa Nota si stabilisce l'esistenza di infinite soluzioni periodiche di periodo assegnato per un sistema Hamiltoniano con potenziale singolare.
@article{RLIN_1992_9_3_2_111_0, author = {Addolorata Salvatore}, title = {Multiple periodic solutions for Hamiltonian systems with singular potential}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {3}, year = {1992}, pages = {111-119}, zbl = {0763.34034}, mrnumber = {1170209}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1992_9_3_2_111_0} }
Salvatore, Addolorata. Multiple periodic solutions for Hamiltonian systems with singular potential. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992) pp. 111-119. http://gdmltest.u-ga.fr/item/RLIN_1992_9_3_2_111_0/
[1] Critical points with lack of compactness and singular dynamical systems. Ann. Mat. Pura e Appl., 149, 1987, 237-259. | MR 932787 | Zbl 0642.58017
- ,[2] Non collision orbits for a class of Keplerian-like potentials. Ann. Inst. H. Poincaré, 5, 1988, 287-295. | MR 954474 | Zbl 0667.58055
- ,[3] A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal., 82, 1989, 412-428. | MR 987301 | Zbl 0681.70018
- ,[4] A new approach to the Morse-Conley theory. In: - (eds.), Proceedings on Recent advances in Hamiltonian systems. World Scientific, Singapore 1987, 83-96. | MR 902622 | Zbl 0663.70028
,[5] Closed geodesics on non compact Riemannian manifolds. Compt. Rend. Acad. Sc. Paris, 312, I, 1991, 857-861. | MR 1108507 | Zbl 0739.53038
- ,[6] On the closed geodesics on non compact Riemannian manifolds. Preprint.
- ,[7] Periodic solutions of Lagrangian systems with bounded potential. J. Math. Anal. Appl., 124, 1987, 482-494. | MR 887004 | Zbl 0664.34053
- - ,[8] Lagrangian systems in the presence of singularities. Proc. Amer. Math. Soc., 102, 1988, 125-130. | MR 915729 | Zbl 0664.34054
- - ,[9] Periodic solutions of dynamical systems with Newtonian type potentials. Ann. Scuola Norm. Sup. Pisa, 15, 1988, 467-494. | Zbl 0692.34050
- ,[10] Dynamical systems with Newtonian type potentials. Atti Acc. Lincei Rend. fis., s. 8, 81, 1987, 271-278. | MR 999819 | Zbl 0667.70010
- - ,[11] Geodesics on non static Lorentz manifolds of Reissner-Nordstrôm type. Math. Annalen., 291, 1991, 383-401. | MR 1133338 | Zbl 0725.53048
,[12] Conservative dynamical systems involving strong forces. Trans. Amer. Mat. Soc.204, 1975, 113-135. | MR 377983 | Zbl 0276.58005
,[13] Periodic solutions of a class of singular Hamiltonian systems. Nonlinear Anal. T.M.A., 12, 1988, 259-270. | MR 928560 | Zbl 0648.34048
,[14] Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamical systems. Ann. Inst. H. Poincaré, 8, 5, 1991, 459-476. | MR 1136352 | Zbl 0749.58046
,[15] Indice de Morse des points critiques obtenus par minimax. 1988, Ann. Inst. H. Poincaré, 5, 1988, 221-225. | MR 954472 | Zbl 0695.58007
,