Multiple periodic solutions for Hamiltonian systems with singular potential
Salvatore, Addolorata
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992), p. 111-119 / Harvested from Biblioteca Digitale Italiana di Matematica

In this Note we prove the existence of infinitely many periodic solutions of prescribed period for a Hamiltonian system with a singular potential.

In questa Nota si stabilisce l'esistenza di infinite soluzioni periodiche di periodo assegnato per un sistema Hamiltoniano con potenziale singolare.

Publié le : 1992-06-01
@article{RLIN_1992_9_3_2_111_0,
     author = {Addolorata Salvatore},
     title = {Multiple periodic solutions for Hamiltonian systems with singular potential},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {3},
     year = {1992},
     pages = {111-119},
     zbl = {0763.34034},
     mrnumber = {1170209},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1992_9_3_2_111_0}
}
Salvatore, Addolorata. Multiple periodic solutions for Hamiltonian systems with singular potential. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992) pp. 111-119. http://gdmltest.u-ga.fr/item/RLIN_1992_9_3_2_111_0/

[1] Ambrosetti, A. - Coti Zelati, V., Critical points with lack of compactness and singular dynamical systems. Ann. Mat. Pura e Appl., 149, 1987, 237-259. | MR 932787 | Zbl 0642.58017

[2] Ambrosetti, A. - Coti Zelati, V., Non collision orbits for a class of Keplerian-like potentials. Ann. Inst. H. Poincaré, 5, 1988, 287-295. | MR 954474 | Zbl 0667.58055

[3] Bahri, B. - Rabinowitz, P. H., A minimax method for a class of Hamiltonian systems with singular potentials. J. Funct. Anal., 82, 1989, 412-428. | MR 987301 | Zbl 0681.70018

[4] Benci, V., A new approach to the Morse-Conley theory. In: G. F. Dell' Antonio - B. D'Onofrio (eds.), Proceedings on Recent advances in Hamiltonian systems. World Scientific, Singapore 1987, 83-96. | MR 902622 | Zbl 0663.70028

[5] Benci, V. - Giannoni, F., Closed geodesics on non compact Riemannian manifolds. Compt. Rend. Acad. Sc. Paris, 312, I, 1991, 857-861. | MR 1108507 | Zbl 0739.53038

[6] Benci, V. - Giannoni, F., On the closed geodesics on non compact Riemannian manifolds. Preprint.

[7] Capozzi, A. - Fortunato, D. - Salvatore, A., Periodic solutions of Lagrangian systems with bounded potential. J. Math. Anal. Appl., 124, 1987, 482-494. | MR 887004 | Zbl 0664.34053

[8] Capozzi, A. - Greco, C. - Salvatore, A., Lagrangian systems in the presence of singularities. Proc. Amer. Math. Soc., 102, 1988, 125-130. | MR 915729 | Zbl 0664.34054

[9] De Giovanni, M. - Giannoni, F., Periodic solutions of dynamical systems with Newtonian type potentials. Ann. Scuola Norm. Sup. Pisa, 15, 1988, 467-494. | Zbl 0692.34050

[10] De Giovanni, M. - Giannoni, F. - Marino, A., Dynamical systems with Newtonian type potentials. Atti Acc. Lincei Rend. fis., s. 8, 81, 1987, 271-278. | MR 999819 | Zbl 0667.70010

[11] Giannoni, F., Geodesics on non static Lorentz manifolds of Reissner-Nordstrôm type. Math. Annalen., 291, 1991, 383-401. | MR 1133338 | Zbl 0725.53048

[12] Gordon, W. B., Conservative dynamical systems involving strong forces. Trans. Amer. Mat. Soc.204, 1975, 113-135. | MR 377983 | Zbl 0276.58005

[13] Greco, C., Periodic solutions of a class of singular Hamiltonian systems. Nonlinear Anal. T.M.A., 12, 1988, 259-270. | MR 928560 | Zbl 0648.34048

[14] Majer, P., Ljusternik-Schnirelman theory with local Palais-Smale condition and singular dynamical systems. Ann. Inst. H. Poincaré, 8, 5, 1991, 459-476. | MR 1136352 | Zbl 0749.58046

[15] Viterbo, C., Indice de Morse des points critiques obtenus par minimax. 1988, Ann. Inst. H. Poincaré, 5, 1988, 221-225. | MR 954472 | Zbl 0695.58007