Note on a mixed variational principle in finite elasticity
Maugin, Gérard A. ; Trimarco, Carmine
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992), p. 69-74 / Harvested from Biblioteca Digitale Italiana di Matematica

In the present context the variation is performed keeping the deformed configuration fixed while a suitable material stress tensor S and the material coordinates are required to vary independently. The variational principle turns out to be equivalent to an equilibrium problem of placements and tractions prescribed at the boundary of a body of finite extent.

Si fissa la configurazione deformata di un solido elastico mentre si richiede che le coordinate materiali e che S, un opportuno tensore materiale degli sforzi, possano variare in modo indipendente. Si tova che il principio variazionale proposto corrisponde ad un problema di equilibrio meccanico.

Publié le : 1992-03-01
@article{RLIN_1992_9_3_1_69_0,
     author = {G\'erard A. Maugin and Carmine Trimarco},
     title = {Note on a mixed variational principle in finite elasticity},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {3},
     year = {1992},
     pages = {69-74},
     zbl = {0760.73025},
     mrnumber = {1160002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1992_9_3_1_69_0}
}
Maugin, Gérard A.; Trimarco, Carmine. Note on a mixed variational principle in finite elasticity. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992) pp. 69-74. http://gdmltest.u-ga.fr/item/RLIN_1992_9_3_1_69_0/

[1] Ogden, R. W., Nonlinear Elastic Deformations. J. Wiley & S., Ellis Horwood Series, Chichester 1984. | MR 770388 | Zbl 0541.73044

[2] Eshelby, J. D., The Elastic Energy Momentum Tensor. J. of Elasticity, 5, 1975, 321-335. | MR 489190 | Zbl 0323.73011

[3] Batra, R. C., The force on a Lattice Defect in an Elastic Body. J. of Elasticity, 17, 1981, 3-8. , | Zbl 0602.73018

[4] Epstein, M. - Maugin, G. A., The Energy Momentum Tensor and Material Uniformity in Finite Elasticity. Acta Mechanica, 83, 1990, 127-133. | MR 1076041 | Zbl 0714.73029

[5] Herrmann, A. G., Material Momentum Tensor and Path independent Integrals of Fracture Mechanics. Int. J. Solids and Structures, 18, 1982, 319-324. | Zbl 0479.73094

[6] Eshelby, J. D., The force on a Disclination in a Liquid Crystal. Philosophical Magazine, 42A, 1980, 359-367.

[7] Rice, J. R., A path independent Integral and the approximate Analysis of strain Concentrations by notches and cracks. J. Appl. Mechs., 35, 1968, 379-386.

[8] Bui, D., Dualité entre les intégrales indépendantes du contour dans la théorie des solides fissurés. C. R. Acad. Sc. Paris, Série A, t. 276, 1973, 1425-1428. | MR 317635 | Zbl 0292.73060

[9] Reissner, E., On a Variational Theorem for Finite Elastic Deformations. J. Math. Physics, 32, 1953, 129-135. | MR 58411 | Zbl 0051.16303

[10] Manacorda, T., Sopra un Principio Variazionale di E. Reissner per la Statica dei Mezzi Continui. Boll. U.M.I., 9 (232A), 1954; 154-159. | MR 65363 | Zbl 0057.40006

[11] Truesdell, C. A. - Toupin, R. A.. In: Encyclopedia of Physics, vol. III/1, Springer, Berlin 1960.

[12] Hellinger, E., Die allgemeinen Ansätze der Mechanik der Kontinua. Enz. Math. Wiss., 4, 1914, 602-694. | JFM 45.1012.01

[13] Green, A. E. - Rivlin, R. S., The Mechanics of Non-Linear Materials with Memory. Arch. Rat. Mech. An., 1, 1957, 1-21; 470. | MR 95628 | Zbl 0079.17602