An existence and uniqueness theorem for a nonlinear parabolic system of partial differential equations, connected with the theory of heat conduction with a transition phase in a concentrated capacity, is given in sufficiently general hypotheses on the data.
Viene dato un teorema di esistenza e di unicità per un sistema non lineare parabolico di equazioni a derivate parziali, connesso con la teoria della diffusione del calore con cambiamento di fase in una capacità concentrata, in condizioni abbastanza generali sui dati del problema.
@article{RLIN_1992_9_3_1_23_0, author = {Enrico Magenes}, title = {Some new results on a Stefan problem in a concentrated capacity}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {3}, year = {1992}, pages = {23-34}, zbl = {0767.35110}, mrnumber = {1159996}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1992_9_3_1_23_0} }
Magenes, Enrico. Some new results on a Stefan problem in a concentrated capacity. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992) pp. 23-34. http://gdmltest.u-ga.fr/item/RLIN_1992_9_3_1_23_0/
[1] Existence and uniqueness of solution to a concentrated capacity problem with change of phase. Europ. J. of Appl. Math., 1, 1990, 339-351. | MR 1117356 | Zbl 0734.35161
,[2] Sul metodo di penalizzazione per operatori parabolici. Rend. Ist. Lombardo, Sc., A 107, 1973, 241-256. | MR 352706 | Zbl 0301.35044
,[2] | Zbl 0065.32401
, Variétés differentiables. Hermann & C., Paris1955.[4] A model problem for heat conduction with a free boundary in a concentrated capacity. J. Inst. Maths. Applics., 26, 1980, 327-347. | MR 605396 | Zbl 0456.35093
- - ,[5] Linear and quasi-linear equations of parabolic type. Amer. Math. Soc. Transl., 23, 1968. | Zbl 0174.15403
- - ,[6] 1 and 2, Springer Verlag, Berlin 1972. | Zbl 0223.35039
- , Non homogeneous boundary value problems and applications. Vols.[7] Numerical approximation of non linear evolution problems. In: (ed.), Frontiers in Pure and Applied Mathematics. Proc. Conf. in honour of J. L. Lions, Elsevier, Amsterdam 1991, 193-207. | MR 1110601 | Zbl 0744.65095
,[8] On a Stefan problem on the boundary of a domain. Proceedings of the Intern. Meeting on Partial Differential Equations and related Problems (in honour to L. Nirenberg) (Trento, Sept. 3/8, 1990). To appear. | MR 1190942 | Zbl 0803.35170
,[9] On a Stefan problem in a concentrated capacity. Nonlinear Analysis (A tribute in honour of Giovanni Prodi), Scuola Normale Superiore, Pisa, 1991, 217-229. | MR 1205385 | Zbl 0839.35151
,[10] Existence and continuity of a weak solution to the problem of a free boundary in a concentrated capacity. Proc. Roy. Soc. Edinburgh, Sect. A, 100, 1985, 271-280. | MR 807706 | Zbl 0591.35086
,[11] Weak solution for an abstract Cauchy problem of parabolic type. Ann. Mat. Pura e Appl., IV, 33, 1983, 93-123. | MR 725021 | Zbl 0524.47031
,[12] Regularity theorems and optimal error estimates for linear parabolic Cauchy problems. Numer. Math., 45, 1984, 23-50. | MR 761880 | Zbl 0527.65036
,