Some new results on a Stefan problem in a concentrated capacity
Magenes, Enrico
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992), p. 23-34 / Harvested from Biblioteca Digitale Italiana di Matematica

An existence and uniqueness theorem for a nonlinear parabolic system of partial differential equations, connected with the theory of heat conduction with a transition phase in a concentrated capacity, is given in sufficiently general hypotheses on the data.

Viene dato un teorema di esistenza e di unicità per un sistema non lineare parabolico di equazioni a derivate parziali, connesso con la teoria della diffusione del calore con cambiamento di fase in una capacità concentrata, in condizioni abbastanza generali sui dati del problema.

Publié le : 1992-03-01
@article{RLIN_1992_9_3_1_23_0,
     author = {Enrico Magenes},
     title = {Some new results on a Stefan problem in a concentrated capacity},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {3},
     year = {1992},
     pages = {23-34},
     zbl = {0767.35110},
     mrnumber = {1159996},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1992_9_3_1_23_0}
}
Magenes, Enrico. Some new results on a Stefan problem in a concentrated capacity. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 3 (1992) pp. 23-34. http://gdmltest.u-ga.fr/item/RLIN_1992_9_3_1_23_0/

[1] Andreucci, D., Existence and uniqueness of solution to a concentrated capacity problem with change of phase. Europ. J. of Appl. Math., 1, 1990, 339-351. | MR 1117356 | Zbl 0734.35161

[2] Brezzi, F., Sul metodo di penalizzazione per operatori parabolici. Rend. Ist. Lombardo, Sc., A 107, 1973, 241-256. | MR 352706 | Zbl 0301.35044

[2] De Rham, G., Variétés differentiables. Hermann & C., Paris1955. | Zbl 0065.32401

[4] Fasano, A. - Primicerio, M. - Rubinstein, L., A model problem for heat conduction with a free boundary in a concentrated capacity. J. Inst. Maths. Applics., 26, 1980, 327-347. | MR 605396 | Zbl 0456.35093

[5] Ladyzhenskaya, O. - Solonnikov, V. - Uralzeva, N., Linear and quasi-linear equations of parabolic type. Amer. Math. Soc. Transl., 23, 1968. | Zbl 0174.15403

[6] Lions, J. L. - Magenes, E., Non homogeneous boundary value problems and applications. Vols. 1 and 2, Springer Verlag, Berlin 1972. | Zbl 0223.35039

[7] Magenes, E., Numerical approximation of non linear evolution problems. In: P. Dautray (ed.), Frontiers in Pure and Applied Mathematics. Proc. Conf. in honour of J. L. Lions, Elsevier, Amsterdam 1991, 193-207. | MR 1110601 | Zbl 0744.65095

[8] Magenes, E., On a Stefan problem on the boundary of a domain. Proceedings of the Intern. Meeting on Partial Differential Equations and related Problems (in honour to L. Nirenberg) (Trento, Sept. 3/8, 1990). To appear. | MR 1190942 | Zbl 0803.35170

[9] Magenes, E., On a Stefan problem in a concentrated capacity. Nonlinear Analysis (A tribute in honour of Giovanni Prodi), Scuola Normale Superiore, Pisa, 1991, 217-229. | MR 1205385 | Zbl 0839.35151

[10] Shillor, M., Existence and continuity of a weak solution to the problem of a free boundary in a concentrated capacity. Proc. Roy. Soc. Edinburgh, Sect. A, 100, 1985, 271-280. | MR 807706 | Zbl 0591.35086

[11] Tomarelli, F., Weak solution for an abstract Cauchy problem of parabolic type. Ann. Mat. Pura e Appl., IV, 33, 1983, 93-123. | MR 725021 | Zbl 0524.47031

[12] Tomarelli, F., Regularity theorems and optimal error estimates for linear parabolic Cauchy problems. Numer. Math., 45, 1984, 23-50. | MR 761880 | Zbl 0527.65036