Regularity of wave and plate equations with interior point control
Triggiani, Roberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 2 (1991), p. 307-315 / Harvested from Biblioteca Digitale Italiana di Matematica

The regularity of solutions of various dynamical equations (wave, Euler-Bernoulli, Kirchhoff, Schrödinger) in a bounded open domain Ω in RN, subject to the action of a point control at some point of Ω, is studied. Detailed proofs of the results are contained in the references [8-10].

Si studia la regolarità delle soluzioni di varie equazioni dinamiche (onde, Euler-Bernoulli, Kirchhoff, Schrödinger) in una regione limitata Ω di RN, sotto l'azione di un controllo esercitato in un punto di Ω. Le dimostrazioni dettagliate si trovano nei riferimenti bibliografici [8-10].

Publié le : 1991-12-01
@article{RLIN_1991_9_2_4_307_0,
     author = {Roberto Triggiani},
     title = {Regularity of wave and plate equations with interior point control},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {2},
     year = {1991},
     pages = {307-315},
     zbl = {0756.93034},
     mrnumber = {1152637},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1991_9_2_4_307_0}
}
Triggiani, Roberto. Regularity of wave and plate equations with interior point control. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 2 (1991) pp. 307-315. http://gdmltest.u-ga.fr/item/RLIN_1991_9_2_4_307_0/

[1] Lions, J. L., Exact controllability, stabilization and perturbations for distributed systems. SIAM Review, vol. 30, 1988, 1-68. | MR 931277 | Zbl 0644.49028

[2] Lions, J. L., Pointwise control for distributed systems. SIAM Publication, to appear (based on colloquium given at Workshop held in Tampa, Florida, February 1985). | MR 2034179

[3] Lions, J. L., Control des systèmes distribués singuliers. Gauthier Villars, 1983. | MR 712486 | Zbl 0514.93001

[4] Lasiecka, I. - Lions, J. L. - Triggiani, R., Nonhomogeneous boundary value problems for second-order hyperbolic operators. J. Math. Pures et Appliques, 65, 1986, 149-192. | MR 867669 | Zbl 0631.35051

[5] Lasiecka, I. - Triggiani, R., A cosine operator approach to modeling L20,T;L2Γ-boundary input hyperbolic equations. Appl. Math. and Optimiz., 7, 1981, 35-83. | MR 600559 | Zbl 0473.35022

[6] Lasiecka, I. - Triggiani, R., Regularity of hyperbolic equations under L20,T;L2Γ-Dirichlet boundary terms. Appl. Math. and Optimiz., 10, 1983, 275-286. | MR 722491 | Zbl 0526.35049

[7] Meyer, Y., Etude d'un modèle mathématique issu du contrôle des structures spatiales déformables. In: H. Brezis - J. L. Lions (eds.), Nonlinear Partial Differential Equations and their Applications. College de France Seminar, vol. II, Research Notes in Mathematics, Pitman, Boston 1985, 234-242. | MR 879465 | Zbl 0543.35030

[8] Triggiani, R., Regularity with interior point control. Part I: Wave equations and Euler-Bernoulli equations. Lecture notes in mathematics, Spinger-Verlag, to appear. | Zbl 0800.93596

[9] Triggiani, R., Regularity with interior point control. Part II: Kirchhoff equations. J. Diff. Eq., to appear. | Zbl 0800.93596

[10] Triggiani, R., Regularity with interior point control. Part III: Schrödinger equations. J. Mathem. Analysis & Applic., to appear. | Zbl 0800.93596