One proves, in the case of piecewise smooth coefficients, that the time derivative of the solution of the so called dam problem is a measure, extending the result proved by the same authors in the case of Lipschitz continuous coefficients.
Si dimostra, nel caso di coefficienti regolari a tratti, che la derivata rispetto alla variabile temporale della soluzione del cosiddetto problema della diga è una misura, estendendo il risultato che gli stessi autori hanno già dimostrato nel caso di coefficienti lipschitziani.
@article{RLIN_1991_9_2_4_287_0, author = {Gianni Gilardi and Stephan Luckhaus}, title = {Extension of a regularity result concerning the dam problem}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {2}, year = {1991}, pages = {287-296}, zbl = {0766.35083}, mrnumber = {1152635}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1991_9_2_4_287_0} }
Gilardi, Gianni; Luckhaus, Stephan. Extension of a regularity result concerning the dam problem. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 2 (1991) pp. 287-296. http://gdmltest.u-ga.fr/item/RLIN_1991_9_2_4_287_0/
[1] On nonstationary flow through porous media. Ann. Mat. Pura Appl., IV, 136, 1984, 303-316. | MR 765926 | Zbl 0552.76075
- - ,[2] | MR 745619 | Zbl 0551.49007
- , Variational and quasivariational inequalities, applications to free boundary problems. Wiley, Chichester 1983.[3] Uniqueness and periodic behaviour of the solution to the evolution dam problem. To appear.
,[4] La vitesse de propagation dans le problème de la digue. Ann. Faculté des Sciences de Toulouse, to appear. | Zbl 0723.76094
- ,[5] | MR 747637 | Zbl 0544.76095
, Variational inequalities and flow in porous media. Springer Verlag, New York1974.[6] Periodic behaviour for the evolutionary dam problem and related free boundary problems. Comm. on Partial Diff. Equations, 11, 1986, 1297-1377. | MR 857169 | Zbl 0624.35084
- ,[7] | MR 679313 | Zbl 0564.49002
, Variational principles and free boundary problems. Wiley, New York1982.[8] A new approach to evolution free boundary problems. Comm. on Partial Diff. Equations, 4, 1979, 1099-1123; 5, 1980, 983-984. | MR 544884 | Zbl 0426.35096
,[9] The support of the solution in the dam problem. Proceedings of the International colloquium on Free boundary problems: theory and applications (Montreal, Canada, 13-22/6/1990), to appear. | MR 1216385 | Zbl 0793.76091
,[10] The dam problem in unbounded domains. Ann. Mat. Pura Appl., to appear. | MR 1243960 | Zbl 0787.76086
- ,[11] A regularity result for the solution of the dam problem. To appear. | MR 1354795 | Zbl 0845.35136
- ,[12] | MR 567696 | Zbl 0457.35001
- , An introduction to variational inequalities and their applications. Academic Press, New York 1980.[13] Su un problema di frontiera libera di evoluzione. Boll. U.M.I., (4), 11, 1975, 559-570. | MR 406069 | Zbl 0331.76058
,[14] Existence results for some free boundary filtration problems. Ann. Mat. Pura Appl., IV, 124, 1980, 293-320. | MR 591561 | Zbl 0445.76078
,