A sufficient condition for a polynomial centre to be global
Sabatini, Marco
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 2 (1991), p. 281-285 / Harvested from Biblioteca Digitale Italiana di Matematica

A sufficient condition is given in order that a centre of a polynomial planar autonomous system be a global centre.

Per il sistema autonomo differenziale S del testo si danno condizióni sufficienti affinché l'origine.O sia un centro globale.

Publié le : 1991-12-01
@article{RLIN_1991_9_2_4_281_0,
     author = {Marco Sabatini},
     title = {A sufficient condition for a polynomial centre to be global},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {2},
     year = {1991},
     pages = {281-285},
     zbl = {0757.34025},
     mrnumber = {1152634},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1991_9_2_4_281_0}
}
Sabatini, Marco. A sufficient condition for a polynomial centre to be global. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 2 (1991) pp. 281-285. http://gdmltest.u-ga.fr/item/RLIN_1991_9_2_4_281_0/

[1] Andreev, A. F., Solution of the Problem of Centre and Focus in One Case. Prikl. Mat. Meth., 17, 1953, 333-338. (in russian). | MR 55521 | Zbl 0053.06203

[2] Conti, R., About Centers of Planar Cubic Systems. Analytic Theory. Preprint, Firenze1987. | MR 956022

[3] Conti, R., Centers of Polynomial Systems in R2. Dip. Mat. Appl. «G. Sansone», 5, Firenze 1990.

[4] Gonzales Velasco, E. A., Generic Properties of Polynomial Vector Fields at Infinity. Trans. Amer. Math. Soc., 143, 1969, 201-222. | MR 252788 | Zbl 0187.34401

[5] Galeotti, M. - Villarini, M., Some Properties of Planar Polynomial Systems of Even Degree. Ann. Mat. Pura Appl., to appear. | MR 1174822 | Zbl 0757.34023

[6] Hartman, Ph., Ordinary Differential Equations. Birkhauser, Boston1982. | MR 658490 | Zbl 0476.34002

[7] Lunkevich, V. A. - Sibirskh, K. S., On the Conditions for a Center. Diff. Uravnenya, 1, 1965, 176-181 (in russian). | MR 192117

[8] Lunkevich, V. A. - Sibirskii, K. S., Conditions for a Center in the Presence of Third Degree Homogeneous Nonlinearities. Diff. Uravnenya, 1, 1965, 1482-1487 (in russian). | MR 190436 | Zbl 0166.34704

[9] Nemitskh, V. V. - Stepanov, V. V., Qualitative Theory of Differential Equations. Princeton University Press, Princeton, New Jersey 1960. | MR 121520 | Zbl 0089.29502

[10] Perko, L. M., On the Accumulation of Limit Cycles. Proc. A.M.S., 99, 1987, 515-526. | MR 875391 | Zbl 0626.34022

[11] Sibirskh, K. S., The methods of invariants in the qualitative theory of differential equations. Ak. Nauk. Moldav. SSR, Kishinev, 1968 (in russian).

[12] Sansone, G. - Conti, R., Equazioni differenziali non lineari. Cremonese, Roma 1956. | MR 88607 | Zbl 0075.26803