All internal constraints compatible with transverse isotropy are determined and representation formulae are given for the constitutive relations of arbitrarily constrained, transversely isotropic materials.
Vengono determinati tutti i vincoli interni compatibili con l'isotropia trasversa. Si danno altresì formule di rappresentazione per le equazioni costitutive di materiali trasversalmente isotropi arbitrariamente vincolati.
@article{RLIN_1991_9_2_3_241_0, author = {Paolo Podio-Guidugli and Maurizio Vianello}, title = {Internal constraints and linear constitutive relations for transversely isotropic materials}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {2}, year = {1991}, pages = {241-248}, zbl = {0744.73008}, mrnumber = {1135429}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1991_9_2_3_241_0} }
Podio-Guidugli, Paolo; Vianello, Maurizio. Internal constraints and linear constitutive relations for transversely isotropic materials. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 2 (1991) pp. 241-248. http://gdmltest.u-ga.fr/item/RLIN_1991_9_2_3_241_0/
[1] VI a/2. | Zbl 0103.16403
, The linear theory of elasticity. In: (éd.), Handbuch der Physik. Springer, Berlin 1972,[2] On the completeness of the crystallographic symmetries in the description of the symmetries of the elastic tensor. J. Elasticity, forthcoming. | MR 1115553 | Zbl 0755.73015
- ,[3] Fourth-rank tensors of the thirty-two crystal classes: multiplication tables. Proc. R. Soc. Lond., A 391, 1984, 149-179. | MR 735233 | Zbl 0521.73005
,[4] Transversely isotropic elasticity tensors. Proc. R. Soc. Lond., A 411, 1987, 85-93. | MR 895353 | Zbl 0611.73002
- ,[5] The non-linear field theories of mechanics. In: (éd.), Handbuch der Physik. Springer, Berlin 1965, III/3. | MR 193816 | Zbl 0779.73004
- ,[6] The representation problem of constrained linear elasticity. J. Elasticity, forthcoming. | MR 1182230 | Zbl 0765.73012
- ,[7] A new proof of the representation constitutive theorem for isotropic, linear relations. J. Elasticity, 8, 1978, 319-322. | MR 504885
- ,[8] Constraint manifolds for isotropic solids. Arch. Rational Mech. Anal., 105 (2), 1989, 105-121. | MR 968457 | Zbl 0678.73004
- , , Finite-dimensional vector spaces. Van Nostrand, Princeton, New Jersey 1958.