The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry over to the discrete problem if «generalized variables» are used in the discretization. A couple of dual kinematic and static minimum properties in generalized variables are finally derived.
Il problema elastoplastico per il continuo, in termini di velocità di variazione, viene formulato come un problema di punto sella non vincolato partendo da un principio di minimo cinematico e utilizzando il metodo dei moltiplicatori di Lagrange. L'imposizione delle condizioni di min-max per la funzione lagrangiana, discretizzata ad elementi finiti, porta ad un sistema algebrico di equazioni governanti (equilibrio, congruenza e legge costitutiva). Si dimostra come importanti proprietà del problema continuo (quali ad es. simmetria, convessità, normalità) si trasferiscano al problema discreto qualora si utilizzino variabili generalizzate per la discretizzazione. Infine, si formula una coppia di proprietà duali di minimo cinematico e statico.
@article{RLIN_1991_9_2_2_177_0, author = {Claudia Comi and Umberto Perego}, title = {A variationally consistent generalized variable formulation of the elastoplastic rate problem}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {2}, year = {1991}, pages = {177-190}, zbl = {0726.73098}, mrnumber = {1120137}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1991_9_2_2_177_0} }
Comi, Claudia; Perego, Umberto. A variationally consistent generalized variable formulation of the elastoplastic rate problem. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 2 (1991) pp. 177-190. http://gdmltest.u-ga.fr/item/RLIN_1991_9_2_2_177_0/
[1] | MR 607503 | Zbl 0482.73051
- , Finite elements in plasticity. Pineridge Press, Swansea 1980.[2] On compatible finite element models for elastic plastic analysis. Meccanica, vol. 13, 1978, 133-150. | Zbl 0417.73073
,[3] A displacement formulation for the finite element elastic-plastic problem. Meccanica, vol. "18, 1983, 77-91. | Zbl 0519.73072
,[4] The general theory of limit design. Proceedings of the 8th Intern. Conf. Appl. Mech. (Istanbul 1952), vol. 2, 1956, 65-72.
,[5] On elastoplastic analysis by boundary elements. Mech. Res. Comm., vol. 10, 1983, 45-52. | Zbl 0511.73090
,[6] On bounding post-shakedown quantities by the boundary element method. Engineering Analysis, vol. 1, 1984, 223-229.
- ,[7] Extremum problem convergence and stability theorems for the finite increment in elastic-plastic boundary element analysis. To appear. | Zbl 0755.73096
- ,[8] An energy approach to the boundary element method. Part II: elastic-plastic solids. Comp. Meth. Appl. Mech. Eng., vol. 69, 1988, 263-276. | MR 969219 | Zbl 0629.73070
,[9] On the variational formulation of assumed strain method. J. Appl. Mech., vol. 53, 1986, 51-54. | MR 832667 | Zbl 0592.73019
- ,[10] Complementary mixed finite element formulations for elastoplasticity. Comp. Meth. Appl. Mech. Eng., vol. 74, 1989, 177-206. | MR 1020622 | Zbl 0687.73064
- - ,[11] Generalized variable finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables. To appear. | MR 1162380 | Zbl 0761.73107
- - ,[12] Incremental elastoplastic analysis and quadratic optimization. Meccanica, vol. 2, 1970, 107-116. | Zbl 0198.58301
- ,[13] Sur les matériaux standards généralisés. J. de Mécanique, vol. 14, 1975, 39-63. | MR 416177 | Zbl 0308.73017
- ,[14]
- , Mécanique des matériaux solides. Dunod, Paris 1985.[15] Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening. Eur. J. Mech., A/Solids, vol. 9, 1990, 563-585. | MR 1082827 | Zbl 0807.73079
- ,