We prove a sufficient condition of continuity at the boundary for quasiminima of degenerate type. W. P. Ziemer stated a Wiener-type criterion for the quasiminima defined by Giaquinta and Giusti. In this paper we extend the result of Ziemer to the case of weighted quasiminima, the weight being in the class of Muckenhoupt.
Si prova una condizione sufficiente di continuità in punti di frontiera per quasiminimi di tipo degenere. W. P. Ziemer provò un criterio di tipo Wiener per i quasiminimi definiti da Giaquinta e Giusti. In questo articolo si estende il risultato di Ziemer al caso di quasiminimi con peso, il peso essendo nella classe di Muckenhoupt. 1. INTRODUCTION
@article{RLIN_1991_9_2_1_25_0, author = {Silvana Marchi}, title = {A Wiener type criterion for weighted quasiminima}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {2}, year = {1991}, pages = {25-28}, zbl = {0744.49018}, mrnumber = {1120119}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1991_9_2_1_25_0} }
Marchi, Silvana. A Wiener type criterion for weighted quasiminima. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 2 (1991) pp. 25-28. http://gdmltest.u-ga.fr/item/RLIN_1991_9_2_1_25_0/
[1] Weighted capacity and the Choquet integral. Proc. Amer. Math. Soc, vol. 102, n. 4, 1988, 879-887. | MR 934860 | Zbl 0658.35025
,[2] Weighted norm inequalities for maximal functions and singular integrals. Studia Math., LI, 1974, 241-250. | MR 358205 | Zbl 0291.44007
- ,[3] Wiener estimates for degenerate elliptic equations. II. Differential and Integral Equations, vol. 2, n. 4, 1989, 511-523. | MR 996757 | Zbl 0733.35045
- ,[4] Harnack inequalities for quasi-minima of variational integrals. Ann. Inst. H. Poincaré, Anal. Non Linéaire, vol. 1, n. 4, 1984, 295-308. | MR 778976 | Zbl 0565.35012
- ,[5] On the regularity of the minima of variationals integrals. Acta Math., 148, 1982, 31-46. | MR 666107 | Zbl 0494.49031
- ,[6] Quasiminima. Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1 (2), 1984, 79-107. | MR 778969 | Zbl 0541.49008
- ,[7] Continuity of quasiminima under the presence of irregular obstacles. Partial Differential Equations, vol. 19, 1987, 155-167. | MR 1055168
,[8] Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc., 165, 1972, 207-226. | MR 293384 | Zbl 0236.26016
,[9] Boundary regularity for weighted quasiminima. Riv. Mat. Univ. Parma, 15 (4), 1989, in press. | MR 1121007 | Zbl 0954.49023
,[10] Boundary regularity for weighted quasiminima. II. Nonlinear Anal., submitted. | Zbl 0901.49031
,[11] A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand., 26, 1970, 255-292. | MR 277741 | Zbl 0242.31006
,[12] Boundary value problems for some degenerate elliptic operators. Ann. Mat. Pura Appl, 80, 1968, 1-122. | MR 249828 | Zbl 0185.19201
- ,[13] Boundary regularity for quasiminima. Arch. Rational Mech. Anal., 92, 1986, 371-382. | MR 823124 | Zbl 0611.35030
,