In this Note we give a rule to compute explicitely the spectrum and the eigenfunctions of the total space of a Riemannian submersion with totally geodesic fibers, in terms of the spectra and eigenfunctions of the typical fiber and any associated principal bundle.
In questa Nota diamo una regola di calcolo esplicito dello spettro e delle autofunzioni dello spazio totale di una submersione riemanniana a fibre totalmente geodetiche, in termini dello spettro e delle autofunzioni della fibra tipo e di un qualsiasi fibrato principale associato.
@article{RLIN_1990_9_1_4_335_0, author = {G\'erard Besson and Manlio Bordoni}, title = {On the spectrum of Riemannian submersions with totally geodesic fibers}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {1}, year = {1990}, pages = {335-340}, zbl = {0716.53031}, mrnumber = {1096827}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1990_9_1_4_335_0} }
Besson, Gérard; Bordoni, Manlio. On the spectrum of Riemannian submersions with totally geodesic fibers. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 1 (1990) pp. 335-340. http://gdmltest.u-ga.fr/item/RLIN_1990_9_1_4_335_0/
[1] Laplacians and Riemannian submersions with totally geodesic fibres. Illinois Journal of Math., 26, n. 2, 1982, 181-200. | MR 650387 | Zbl 0483.58021
- ,[2] A Kato type inequality for Riemannian submersions with totally geodesic fibers. Annals of Global Analysis and Geometry, vol. 4, n. 3, 1986, 273-289. | MR 910547 | Zbl 0631.53035
,[3] | MR 413144 | Zbl 0246.57017
, Introduction to compact transformation groups. Academic Press, 1972.[4] Some examples of manifolds of non negative curvature. J. Diff. Geom., 8, 1972, 623-629. | MR 341334 | Zbl 0281.53040
,[5] G-spaces, the asymptotic splitting of into irreducibles. Math. Annalen, 237, 1978, 23-40. | MR 506653 | Zbl 0379.53019
,[6] A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle. Proc. Amer. Math. Soc, vol. II, 1960, 236-242. | MR 112151 | Zbl 0112.13701
,[7] I. Wiley Interscience, New York-London 1963. | MR 152974 | Zbl 0119.37502
- , Foundations of differential Geometry. Vol.[8] The fundamental equations of a submersion. Michigan Math. J., 13, 1966, 459-469. | MR 200865 | Zbl 0145.18602
,[9] | MR 352231 | Zbl 0223.20003
, Representations linéaires des groupes finis. Hermann, Paris1971.[10] Totally geodesic maps. J. Diff. Geom., 4, 1970, 73-79. | MR 262984 | Zbl 0194.52901
,[11] I. Springer Verlag, 1972. | Zbl 0265.22020
, Harmonic analysis on semisimple Lie groups. Vol.